
Learn to Code - Ch04 Rev01.2 ~ Plum Geek

Button and Sound Lesson 4

Up to this point, our examples have just run in a quick loop over and over. Sometimes
you may want your program to wait for something to happen - like button press. You can
cause your program to stop and wait for a button press with the waitForButton() function.

Do something when you press Wink’s button...

void loop(){

 waitForButton(); //wait here till’ button pressed

 eyesRed(100); //make eyes red

 delay(1000); //wait 1 second

 eyesOff(); //turn eyes back off

}

void loop(){

 waitForButton(); //wait here till’ button pressed

 eyesRed(100); //make eyes red

 delay(25); //wait 25 milliseconds

 eyesOff(); //turn eyes back off

}

Wait for button to be pressed. Program
continues as soon as button is pressed,
turning eyes on for one second, then back
off, then program loops again and waits for
another button press.

Wait for button to be pressed. Program
continues as soon as button is pressed,
turning eyes on for 25 milliseconds, then
back off, then program loops and again waits
for a button press.

SKILL
LEVEL

By waiting for the button press, you can trigger an event (like blinking the eyes) whenever you
want to. You may notice in this example, that if you hold the button down and keep holding it, the
eyes appear to stay on. They are indeed being turned off for a very short amount of time at the
end of the loop after the 1 second delay, but then waitForButton() is run again quickly following -
if you’re still holding the button, the light will be turned back on for another second.

Let’s make the light turn back off quickly as soon as you release the button. We can do this by
making the delay time much shorter. Lets try delay(25) this time.

You’ll notice this version responds more quickly when you release the button. The first version is
good if you want the eyes to stay on for a while after a quick press, and the second version is
good if you want the eyes to only turn on while you’re pressing the button. Once you reach the
Skill Level 2 lessons, you’ll learn how to use “if” and “else” for an even better way to control this.

Wink_Ch04Button_Ex01

Wink_Ch04Button_Ex02

1

Learn to Code - Ch04 Rev01.2 ~ Plum Geek

1
SKILL
LEVEL

void loop(){

 waitForButton(); //wait here till’ button pressed

 eyesRed(100); //make eyes red

 beep(25); //beep for 25 milliseconds

 eyesOff(); //turn eyes back off

}

 beep(200); //beep for 200 milliseconds

 beepOn(); //turn on the beep and leave it on

 beepOff(); //turn off the beep sound

beep() works just like delay() except it turns
on the sound during the delay.

Use beep functions to control the sound.

Now you know how to control Wink’s eyes, his motors, his sound, and do stuff when the button is
pressed. Easy, right? This is a good time to have some fun and experiment on your own. In the
next lesson we’ll put these ideas together to do something fun.

You’ll quickly notice that Wink’s sound beep is fairly loud. It’s a good idea to use the beep()
function in most cases because it turns on the beep, then turns it back off after a certain number
of milliseconds. You can also use beepOn() to turn on the beep and leave it on. But don’t forget
to turn it back off in your code by calling beepOff(). Note that the beep() function limits the beep
time from between 10 milliseconds and 1000 milliseconds. If you give it a number less than 10, it
will beep for 10 and if you give it a number larger than 1000, it will only go for 1000 milliseconds.
This is to prevent you from accidentally entering a really large number and having to wait through
a very long beep.

VERY IMPORTANT WARNING!!! The part that makes the beep sound is intended to be either on
or off. Attempting to rapidly turn it on and off to create different pitch tones will likely damage the
part. The beep() function has built in time delays to make sure this doesn’t happen, so you should
use the beep() function when possible. DO NOT attempt to control the beep by using the Arduino
tone() function or similar code as this will likely damage the part. Also avoid calling beepOn()
and beepOff() in tight loops as this can cause the same problem. It is suggested the beep last
no shorter than 10 milliseconds, and that there is a delay of at least 50 milliseconds before it is
turned back on. The beep() function makes sure these limits are not exceeded.

Let’s add sound to our button example from above.

Let’s learn to control Wink’s beep sound. The functions work like this.

Adding sound...

Experiment on your own...

Button and Sound Lesson 4

Wink_Ch04Button_Ex03

