
Learn to Code - Ch12 Rev01.1 ~ Plum Geek

Advanced Light Seeking Lesson 12

In earlier lessons we have used Wink’s ambient light sensors to see the light around him
as well as barriers, but in all of the previous examples, his eyes were turned off. This is because
Wink’s ambient light sensors can see the light produced by Wink’s eyes.

If we turn on Wink’s eyes while reading the ambient light sensors, we will get a different reading
compared to reading when the eyes are turned off. Wink’s eyes change their brightness by blinking
on and off very quickly. When Wink’s eyes are dim, they are on for a very short time, then turned
off for a while, then turned back on for a very short time. This on and off action is fast enough that
your human eyes can’t see it. But Wink’s ambient sensors can see this blinking effect.

That is to say, if you turn on Wink’s eyes using eyesBlue(100), then start reading the ambient
sensors in your code, you will start getting values that are not constant. The values will bounce
around depending on whether the sensor is read while Wink’s eyes are momentarily turned on or if
the reading happened while they were off. There is a mini computer inside each eye that handles
this blink rate, so it is impossible to “synchronize” the reading of the light sensors with the blink
rate of the eyes.

For the above reasons, you may think it is impossible to do anything useful with Wink’s ambient
light sensors while making his eyes light up. This is actually true, but there is a work around.

Simply turn the eyes off, then read the sensor, then turn the eyes back on.

Remember back to Lesson 8 where we learned how to read Wink’s ambient sensors, and
also Lesson 10 where we learned how to detect a barrier in front of Wink. In this lesson
we will build on both of those past lessons and learn a few new things.

In this lesson we will put together several earlier concepts to build a complete light seeking
behavior that works like the one in the Wink Demo behaviors. By the end you’ll be able to do
all kinds of fun things with light.

Wink’s color eyes and Light Sensors...

3
SKILL
LEVEL

void loop(){

 eyesOff();

 sensorValue = analogRead(AmbientSenseCenter);

 eyesOn();

}

Briefly turn off Wink’s eyes before reading an
ambient sensor.

The sensor doesn’t take very long to read, so your human eyes will hardly see the time the eyes
are off. You may perceive a brief change of brightness or flicker, but it will appear as if the eyes
are generally turned on the entire time.

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

SKILL
LEVEL

There is one more thing to consider using this trick of briefly turning the eyes off before
reading the ambient sensor.

We need to add an extra bit of delay between the time we turn off the eyes and the time
we read the ambient light sensor. This is for two important reasons.

1.	 The first reason is that it takes a short time for the ambient light sensor to react to the
change in light level. Because Wink’s code runs very fast, if you attempt to read the
ambient light sensor immediately following turning off the eyes, the sensor will be read
before it has time to react to the new, lower light level.

2.	 The second reason is that Wink’s eyes have their own internal computer. When they are
commanded to change to a new brightness level (or turn off the eyes) it takes them a brief
time to actually change the brightness of the eyes. This usually happens almost instantly but
sometimes the eyes can take up to 4 milliseconds to actually turn off.

Normally the eyes will turn off and the sensors will react to the new lower light level after
about 250 microseconds (which is 1/4 of a millisecond). Though sometimes it can take up to
4 milliseconds for the eyes to turn off due to the second reason above. This has to do with the
internal clocking of the eyes themselves and is beyond this lesson. You may choose to use the
shorter delay of 250 microseconds or the much longer delay of 4 milliseconds depending on what
you are doing.

If you are running your code in a fast loop where the light sensor is constantly measured and your
code responds to this in some way (like changing the speed of the motors) then an occasional
reading that is incorrect won’t cause much harm as the sensor will be quickly read again shortly
following. But if you need to have more confidence that the reading is correct, and that it has not
been interfered with by the eyes, use the longer delay of 4 milliseconds. This longer delay will be
more visible to your human eyes but you can be much more confident that the value read by the
ambient light sensor is correct and has not been effected by the eyes being on.

3

void loop(){

 eyesOff();

 delayMicroseconds(250);

 sensorValue = analogRead(AmbientSenseCenter);

 eyesOn();

}

void loop(){

 eyesOff();

 delay(4);

 sensorValue = analogRead(AmbientSenseCenter);

 eyesOn();

}

Use delayMicroseconds(250) before reading
ambient light sensors

Use delay(4) before reading ambient light
sensors for a more accurate value

Advanced Light Seeking Lesson 12

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

SKILL
LEVEL

The above technique can be used to operate Wink’s eyes during light seeking and also barrier
detection.

3

int left,center,right;	 //declare variables

void loop(){

 eyesOff();	 //turn eyes off

 delay(4);	 //wait 4 milliseconds before read sensors

 left = analogRead(AmbientSenseLeft);	 //read left

 center = analogRead(AmbientSenseCenter);	//read center

 right = analogRead(AmbientSenseRight);	 //read right

 eyesPurple(100);	 //turn eyes back on

 Serial.print(left);	 //left value

 Serial.print(“\t”);	 //tab key

 Serial.print(center);	 //center value

 Serial.print(“\t”);	 //tab key

 Serial.print(right);	 //right value

 Serial.println();	 //print a new line character

 delay(500);		 //delay 1/2 second

} //end of loop()

Declare variables we will be using

Turn off eyes and delay 4 milliseconds before
reading the three sensors

Read all three sensors

Turn eyes back on immediately after reading
sensors

Print sensor values to the Serial Monitor
window

Wink_Ch12AdvLightSeek_Ex01

Let’s revisit an example from the Light Sensors lesson. The example below does
the same thing as the original example except the eyes are now turned on. Try this
example and view the output in your Serial Monitor window.

Advanced Light Seeking Lesson 12

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

SKILL
LEVEL

Building a better light seeking behavior...

3

Now that you know how to turn on Wink’s eyes during light seeking, let’s consider
how we may design a light seeking behavior where Wink drives around seeking out
light.

For this behavior, let’s begin with Example 5 from Lesson 9 where you learned to use the “if”
control structure. In that example, Wink remained in his own footprint while facing toward the
brightest light. The final “else” in that example made the motors still if both eyes were seeing
almost the same amount of light. Let’s edit that example to make both motors move forward
if the light is nearly the same on both sides. We will also lower the motor speeds a bit
from 100 to 70 so Wink moves a bit more slowly while we experiment. Here’s the previous
example edited as a starting point for this new example. We are also adding code to turn on
the eyes, and only turn them off during sensor reading.

Load up this example and use a light source to play with Wink for a while. It is important to
experiment with this code on Wink before moving ahead so you can see how he acts.

int leftLight, rightLight; //declare the variables

void loop(){

 eyesOff();	 //make sure eyes are off

 delay(4);	 //wait 4 milliseconds for sensors to settle

 leftLight = analogRead(AmbientSenseLeft); //read left

 rightLight = analogRead(AmbientSenseRight); //read right

 eyesGreen(100);	//turn eyes back on

 if (rightLight-10 > leftLight) 	 //if right is greater

 {

 motors(70,-70); 	//spin to the right

 }

 else if (leftLight-10 > rightLight) //if left is greater

 {

 motors(-70,70); 	 //spin to the left

 }

 else 	 //otherwise...

 {

 motors(70,70); 	 //drive straight

 }

 delay(100);	 //wait 1/10th second before doing loop again

} //end of loop()

Declare the variables we will need

Read both sensors

Eyes back on

Delay before looping again

Eyes of and settle time

If rightLight is more than 10 greater than
leftLight, then run code to make motors spin
and rotate Wink to the right.

If leftLight is more than 10 greater than
rightLight, then run code to make motors spin
and rotate Wink to the left.

If neither of the above are true, then the light
level must be fairly even. This is the “dead
band”. In this case, make the motors drive
straight.

Wink_Ch12AdvLightSeek_Ex02

Advanced Light Seeking Lesson 12

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

SKILL
LEVEL

You will see this works much better. Mostly because the motors are being updated 20 times
faster. You may however still notice that if you get the light very close to Wink, he still wants to
just move side to side instead of moving forward.

In the motors() function, instead of making the motors run opposite speeds so Wink spins, lets
give values of 70 and 20, so he will turn but both motors will keep moving forward at all times.

3

Now that you’ve spent some time experimenting, let’s consider what is happening.
If you read over the code, it seems to make sense that Wink will always seek the
light, and he does. However, you’ve probably also noticed that when shining the light
directly at him, he doesn’t really track in on the light, he just wags side to side.

Let’s think about why this may be happening. If one sensor reads a certain amount more
than the other sensor, Wink will make a hard turn that direction. The next time the loop runs,
he has over-shot the light a bit, and now the opposite is true, so he makes a hard turn back
the opposite direction. This happens over and over and he never really “tracks” the light the
way you would expect.

Also note that because we’re giving the motors() function exactly opposite numbers,
whenever Wink starts to turn, he actually stops moving forward and just spins back and forth
in his own footprint. The only way he will drive forward is if the sensors are reading nearly
identical values.

If we make the loop run much faster, the sensors will be read more often and the motor
speeds will be updated more often. Let’s change the delay before reading the sensors to
the much shorter 250 microseconds amount, then make the loop run much faster. We’ll wait
only 5 milliseconds between reading instead of the 100 milliseconds we are waiting in the
previous example. (The companion code has the full code, I’m only showing you the two
lines to edit below).

delayMicroseconds(250); //use shorter delay before sensor read

delay(5);	 //much shorter loop delay

 if (rightLight-10 > leftLight)	 //if right is greater

 {

 motors(70,40); 	 //slow down right motor

 }

 else if (leftLight-10 > rightLight) //if left is greater

 {

 motors(40,70); 	 //slow down left motor

 }

Change delay time near the bottom of loop

Before reading sensors, change from
delay(4) to delayMicroseconds(250)

Change the -70 to 40

Change the -70 to 40

Wink_Ch12AdvLightSeek_Ex03

Wink_Ch12AdvLightSeek_Ex04

Advanced Light Seeking Lesson 12

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

“Control Loops”...

“Dynamic” Control Loops...

What we have created with our light seeking examples is called a “control loop”. A
control loop is a program that reads at least one input (like a sensor), then changes at
least one output (like a motor) based on the input, then it repeats.

By experimenting with the previous examples, we have seen that making changes to different
parts of the control loop can have significant effects on how the robot operates. By changing
the speed of the control loop, we make the output (like the motor speed) update more often,
so the amount of “over shoot” between readings is much less. We can also see that the
amount of change to the motor speed, like using motors(70,40) instead of motors(70,-70)
also has a significant effect.

If we make the change in motor speed very large, Wink will turn more sharply, but he will be
more likely to over-shoot because he turns faster. But if we make the change much smaller
as in the previous example, he won’t over shoot so much because he is making a weaker
turn. However this causes a new problem (that you may have already noticed) because he
may not turn fast enough to actually follow the light.

Experiment with different turning strength numbers on your own for a while to see how
different numbers change how Wink drives and responds to the light.

A “dynamic” control loop is a loop that changes over time based on something. In our previous
example, the turn strength is set by your code and cannot be changed while the robot is running.
No matter how much light is on one side or another, the turn is always the same. Sometimes
when facing right into the light, where both sensors read almost the same amount, the turn should
be less strong. But if you shine a light on the side of Wink, and one sensor is reading much more
than the other sensor, Wink should make a stronger turn to try to face the light more quickly.

What we really want is for Wink to turn strong when needed, but tend to drive more straight with
less turning force when a strong turn is not needed. We need to find a way to make this turn
strength change automatically as the loop runs.

How can we do this?

If you’re in a group, stop here and discuss what we could do to make this work better, or stop and
think about it on your own for a while.

SKILL
LEVEL

3

Advanced Light Seeking Lesson 12

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

SKILL
LEVEL

In our previous examples, the control loop only has three choices. Wink can turn at a
certain strength to the left or to the right, or he can drive straight. In order to solve the
problem, we really need this turn strength to change as the program runs. Sometimes Wink
should turn more strongly and sometimes he should turn less strongly.

We could possibly do this by adding a lot more “else if” statements, but that’s not very efficient. It
takes a long time to write the code and it is hard to edit.

What would be a much better solution is for the program to automatically adjust the motor speed
based on the light level. When Wink is facing directly into a light, both the left and right ambient
sensors should read about the same amount because an equal amount of light is falling on each
sensor. But as you move the light source more to the side of Wink, the sensor on that side will
start to read much higher than the sensor on the opposite side.

If the sensors are reading close to the same amount, we would want the motors to drive about the
same speed. If one sensor is reading much higher than the other, then there must be a bright light
on that side so Wink should make a strong turn that direction.

3

Planning the new program...

This new program is going to be a bit more complicated than the previous example, so let’s
consider what we will need to do, then we’ll write some code that does what we want.

1.	 First we need to measure the left and right ambient light sensors. We will then need to figure
out the difference between the two readings. We will probably need variables for all three of
these.

2.	 We will need to make Wink start driving at some “normal” speed.

3.	 We will need to figure out which of the two sensors was reading the highest amount.

4.	 We will need to either speed up or slow down one or both of the motors based on the
difference in the sensor readings from step 1. This way, as the difference in the sensor
readings increases, the effect of the turn will also increase.

Let’s start with a normal motor speed of 70. If the left sensor reads higher, we will subtract the
sensor difference from the speed of the left motor, which will make Wink turn toward the left. We’ll
do the opposite if the right sensor reads higher.

If you want a challenge, try to write this program yourself. You already know everything necessary
to do this. At least consider or discuss with your group for a few minutes before moving forward.

If you try to write your own, here’s a quick tip. the abs() function returns the absolute value of
anything inside the parentheses, which is helpful to make a negative number become positive.

sensorDiff = abs(leftSensor-rightSensor);
This line of code automatically calculates the
sensor difference based on the actual left
and right sensor values. The abs() function
deals with the case where the right sensor is
larger, which will result in a negative number.
The abs() function tells the difference
between the sensors, but not which one is
greater than the other.

Advanced Light Seeking Lesson 12

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

Light seeking with motor speed based on the difference between the sensors...

SKILL
LEVEL

int leftSensor, rightSensor; //declare the variables

int sensorDiff; //difference between sensors

int baseMotorSpeed = 70; //declare and set base speed

void loop(){

 eyesOff(); 		 //make sure eyes are off

 delay(4); //longer 4ms delay before sensor read

 leftSensor = analogRead(AmbientSenseLeft);	 //read left

 rightSensor = analogRead(AmbientSenseRight); 	 //read right

 eyesGreen(100); 	 //turn eyes back on

 sensorDiff = abs(leftSensor-rightSensor); //get difference

 if(rightSensor>leftSensor){ 	 //if the Right is greater

 motors(baseMotorSpeed,(baseMotorSpeed-sensorDiff)); //go right

 }

 else{ 	//else

 motors((baseMotorSpeed-sensorDiff),baseMotorSpeed); //go left

 }

 delay(20); 	 // short delay before repeating

} //end of loop()

Declare variables. baseMotorSpeed is set
during variable declaration.

Turn off eyes, wait sensor settle delay, then
read both left and right sensors. Turn eyes
back on right away so your human eyes see
less flicker.

Figure sensorDiff. The abs() function returns
the absolute value of the result of subtracting
rightSensor from leftSensor.

This delay sets how fast the loop repeats.

Subtract sensorDiff from baseMotorSpeed to
cause a turn to happen.

3

Wink_Ch12AdvLightSeek_Ex05

Load up this example and see what happens. It looks like it’s working pretty well to me, except
that when Wink looks straight into a bright light from a flashlight, he still tends to sit still and
quickly wag side to side. If I shine the light on him just right, I can actually make him slowly walk
backward while wagging side to side.

Why is this happening?

Consider what we’re doing to the motor speed inside the motors() functions. We are subtracting
the sensor difference from a motor on one side. This sensor difference could become quite
large if a bright beam of light is shining on one sensor. If a large number (like a few hundred) is
subtracted from a small number (like 70), it will make the speed for one motor go backward, and
maybe even the maximum speed backward (-255).

If we could somehow make sure the sensorDiff is never greater than the base motor speed, we
could make sure the motor never goes backward. This would make sure Wink always moves
forward no matter what.

I wonder if there is an easy way to limit how large or small a value can be inside a variable. That
could be really helpful right now.

Advanced Light Seeking Lesson 12

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

You may wonder where we found the neat abs() function used in the last example.
Sometimes you may have thoughts like, “I’d really like to be able to limit a variable like
sensorDiff to 70. How can I easily do this?” It turns out the nice people at Arduino have
published a handy function reference. Visit the official Arduino website at www.arduino.cc Then
navigate to “Learning” then “Reference”. This is an EXCELLENT page to book mark in your web
browser. This page lists all the official Arduino functions you can use in your code. Click on any of
them to see how they work.

There is a useful function we can use called constrain(), which basically takes a number or
variable, and “constrains” it to between a lower and upper limit. If you give it the number 100 and
tell the function to constrain it between 0 and 10, it will return 10 as the result. It automatically
raises or lowers the value far enough to make it equal to the lower or upper limit of the range you
specify.

Constrain works like this...

Arduino function reference...

result = constrain(startingValue, lowerLimit, upperLimit);

sensorDiff = constrain(sensorDiff, 0, 70);

sensorDiff = constrain(sensorDiff, 0, baseMotorSpeed);

Using constrain

Constrain sensorDiff to between 0 and 70

Constrain sensorDiff to between 0 and
whatever we have baseMotorSpeed set to

So after we get our sensorDiff value, we could use constrain() to make sure the value we subtract
from the ‘slow’ motor is no more than the motor speed of 70. Like this...

This would work fine, but as long as we’re here, we should realize that we’ll probably be adjusting
our baseMotorSpeed variable a few times. If we write the constrain() as above, we’ll have to
constantly change the “70” value. So instead of writing “70”, let’s just use the baseMotorSpeed
variable directly. Like this...

We can add this line of code to our previous example right after the sensorDiff is calculated. The
entire new example is on the next page.

3
SKILL
LEVEL

Advanced Light Seeking Lesson 12

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

This works much better. I’d say Wink is now doing a pretty good job of seeking the light. As you
play with this example, keep a few things in mind.

1.	 Remember that Wink’s ambient sensors are most sensitive seeing light along the running
surface. They are less sensitive if you shine light from directly above him, and the eyes do
shadow the sensors a bit. To see the best reaction, place your flashlight flat on the running
surface and point it toward Wink. You will find he responds much better.

2.	 Wink can see sunlight very well. If you have a window or open door nearby, you will notice
he really likes to go toward it. Your light source needs to over-power this external light. If
your room is really bright, you may need to close your blinds so the room is darker. Wink is
less sensitive to some flashlights (especially LED type flashlights) but normally this is not a
problem.

3.	 You may notice that under even lighting Wink tends to want to always steer a certain direction.
When the sensors are manufactured, there is a very slight variance between them. So even
in perfectly even light, you may notice that one sensor always reads slightly higher than the
other. You can test this with Serial.print functions. If you notice the right sensor is always 5 or
10 counts higher for example, you can add an extra line of code after the sensor reading that
subtracts the 5 or 10 counts from the reading so they’re more equal in even lighting.

3
SKILL
LEVEL

int leftSensor, rightSensor; //declare the variables

int sensorDiff; //difference between sensors

int baseMotorSpeed = 70; //declare and set base speed

void loop(){

 eyesOff(); 		 //make sure eyes are off

 delay(4); //longer 4ms delay before sensor read

 leftSensor = analogRead(AmbientSenseLeft);	 //read left

 rightSensor = analogRead(AmbientSenseRight); 	 //read right

 eyesGreen(100); 	 //turn eyes back on

 sensorDiff = abs(leftSensor-rightSensor); //get difference

 sensorDiff = constrain(sensorDiff, 0, baseMotorSpeed);

 if(rightSensor>leftSensor){ 	 //if the Right is greater

 motors(baseMotorSpeed,(baseMotorSpeed-sensorDiff)); //go right

 }

 else{ 	//else

 motors((baseMotorSpeed-sensorDiff),baseMotorSpeed); //go left

 }

 delay(20); 	 // short delay before repeating

} //end of loop()

Use constrain() to make sure sensorDiff is
not greater than the baseMotorSpeed

Wink_Ch12AdvLightSeek_Ex06

Advanced Light Seeking Lesson 12

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

So Wink is following the light pretty well now. It’s fun to play with at this point, but we
could do a few more things to give him a bit more personality.

Let’s pretend that Wink lives on light - like light is his food. Maybe we assume that when
there is no light, Wink will rest by sitting still, and when he begins to see some light, he tries to
follow it. We can also say that as he sees more and more light, that he runs faster and faster to
try to catch it.

Can we do a few more things to our program to make this happen?

We can measure the center ambient sensor as well as the left and right, and use the amount of
light on the center sensor as the basis for his motor speed. We can also say that if the light on the
center sensor is below a certain amount, he sits still to conserve energy.

Try to work this up on your own if you like. It’s a good challenge.

I put my own example on the next page by itself because it’s rather long. Here is a list of some of
the things I did that may help in writing your own example.

1.	 I’ve added the variable and step of reading the center sensor.

2.	 I’ve calculated a “speed boost” based on the reading of the center sensor. Remember motor
speed can only go up to 255, but the sensor can read up to 1024. If I just add the sensor
reading to the motor speed, it will very quickly max out. To bring the sensor reading down
into a range more compatible with the motor speed, I’ve divided the center sensor reading by
5, then constrained that result to a max of 250. I then figure the motor speed we are actually
going to use by adding this speed boost to the base motor speed. I have also set the base
motor speed much lower than before (20 in this case) because the “speed boost” is going to
make up much of the final motor speed. You can play with the amount you divide the speed
boost and where you constrain it to see what different effects these have.

To divide in C, use the forward slash like this: / To multiply in C, use the * asterisks symbol.

Remember that when you do division on an “int” type variable (which is what we’re using for
sensorDiff), there will be no decimal left over. Any decimal remainder will be dropped, because
an “int” type variable cannot store a decimal.

3.	 I’ve added a while() loop that stops motors and turns off the eyes when the center sensor
reading is very low, so Wink will rest when no light is present.

4.	 I’ve used the new “motorSpeed” variable in the functions that actually drive the motors. Having
“motorSpeed” as its own variable, you can do other math to this value in your code without
having to do the math inside the motors() functions themselves. This works the same both
ways, but makes the code more easy to read and edit by calculating motorSpeed on its own
lines before the motors() functions.

Adding more variables to the control loop...

3

Advanced Light Seeking Lesson 12

SKILL
LEVEL

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

int leftSensor, rightSensor, centerSensor;

int speedBoost, motorSpeed;

int sensorDiff;

int baseMotorSpeed = 20;

int restingLightLevel = 10;

void loop(){

 eyesOff();

 delay(4);

 leftSensor = analogRead(AmbientSenseLeft);

 rightSensor = analogRead(AmbientSenseRight);

 centerSensor = analogRead(AmbientSenseCenter);

 eyesCyan(100);

 sensorDiff = abs(leftSensor-rightSensor);

 sensorDiff = constrain(sensorDiff, 0, baseMotorSpeed);

 speedBoost = centerSensor / 5;

 speedBoost = constrain(speedBoost,0,250);

 motorSpeed = baseMotorSpeed + speedBoost;

 while(centerSensor < restingLightLevel){

 eyesOff();

 motors(0,0);

 centerSensor = analogRead(AmbientSenseCenter);

 delay(100);

 }

 if(rightSensor>leftSensor){

 motors(motorSpeed,(motorSpeed-sensorDiff));

 }

 else{

 motors((motorSpeed-sensorDiff),motorSpeed);

 }

 delay(20);

} //end of loop()

Get sensorDiff and constrain it. You can
change “baseMotorSpeed” to a hard number
like “40” to allow Wink to make stronger
turns.

Divide down centerSensor for speedBoost
then constrain it. Add speedBoost to
baseMotorSpeed to get final motorSpeed
used below.

Sit still with eyes off while centerSensor is
less than restingLightLevel from above

Set driving motor speeds

Delay before loop repeats

Base motor speed under low light and
the “resting” light threshold. Adjust this
restingLight level for your own room. If your
room is brighter and Wink won’t stop moving,
raise this amount a bit until you find the level
where he will stop moving.

Read all three sensors.

Wink_Ch12AdvLightSeek_Ex07

3

Advanced Light Seeking Lesson 12

SKILL
LEVEL

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

We’ve almost got it. The previous example is working really well. I can think of a couple
more things that will make it even better then you’re on your own.

I think it would be interesting to make Wink’s eyes get brighter the closer he gets to the light. I
also think it would be fun to have his eyes turn red and his sound chirper “scream” as Wink attacks
the light.

A few final touches...

Make eyes red and turn on sound chirper to
“scream” if centerSensor level is greater than
the screamLight threshold level. Else turn
sound chirper off. Eyes will automatically re-
set to the normal color the next time through
loop().

The digitalWrite() Arduino function accepts
a pin name, and setting it “HIGH” turns it
on, and setting it “LOW” turns it off. The pin
name for Wink’s sound maker is “Beeper”.

speedBoost is now declared as 0 so it is
zero the first time through the loop. We’ve
added screamLight threshold at 900.

Eye brightness is now based on speedBoost

int leftSensor, rightSensor, centerSensor;

int speedBoost = 0;

int sensorDiff, motorSpeed;

int baseMotorSpeed = 20;

int restingLightLevel = 10;

int screamLight = 900;

void loop(){

 eyesOff();

 delay(4);

 leftSensor = analogRead(AmbientSenseLeft);

 rightSensor = analogRead(AmbientSenseRight);

 centerSensor = analogRead(AmbientSenseCenter);

 eyesCyan(speedBoost);

 //.. removed to save space on this page (see companion code)

 if(centerSensor > screamLight){

 eyesRed(250);

 digitalWrite(Beeper, HIGH);

 }

 else{

 digitalWrite(Beeper, LOW);

 }

 if(rightSensor>leftSensor){

 motors(motorSpeed,(motorSpeed-sensorDiff));

 }

 else{

 motors((motorSpeed-sensorDiff),motorSpeed);

 }

 delay(20);

} //end of loop()

Wink_Ch12AdvLightSeek_Ex08

3

Advanced Light Seeking Lesson 12

SKILL
LEVEL

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

It ’s working great! Here is one final “extra credit” example that takes it one step further
with some math.

Things are working really well except for one thing that is bothering me. You’ll notice that
when shining a light near the side of Wink, he doesn’t turn very fast. This is because we are
constraining sensorDiff to baseMotorSpeed, which is quite low in this example. This means that
Wink can only have a turn strength of 20, which isn’t very strong.

One simple way to make the turn strength stronger is just to use a hard number like “80” in the
sensorDiff constrain (instead of baseMotorSpeed as it is now), but we can do something even more
dynamic here.

I’d like him to turn stronger when the light level is lower, this way he’ll quickly rotate to face any
light, but once he starts to rush toward the light, I want the turn strength to be lower so he doesn’t
wag side to side as much.

This will take a few steps of math but we can figure it out. We’ll create yet another new variable
called turnBoost. When the light level is low, I want to give a boost of an extra 50 to turn strength
so he can turn more quickly. But when the light level is high (the center sensor is reading toward
the top of the range), I want the boost to be very low - like zero.

This is a range of 50 over a possible light sensor range of about 1000. So if we divide the center
light sensor value by 20, then subtract that amount from 50, we should have about the number
we’re looking for.

turnBoost = 50 - (centerSensor / 20);

turnBoost = constrain(turnBoost, 0, 50);

 if(rightSensor>leftSensor){

 motors((motorSpeed+turnBoost),(motorSpeed-sensorDiff-turnBoost));

 }

 else{

 motors((motorSpeed-sensorDiff-turnBoost),(motorSpeed+turnBoost));

 }

This math should make turnBoost near 50
when light level is low, and near zero when
light level is high.

Add the turnBoost to the motors() function,
so we drive the motorSpeed, minus the
sensorDiff, minus an additional amount
of turnBoost. We will also add a positive
turnBoost to the opposite motor. Do this for
motors() in both cases.

We’ll subtract turnBoost from the ‘slow’ side, but also add it to the ‘fast’ side, that way Wink
wants to spin a bit more. You’ll notice he’s a bit more twitchy now so you can play with the max
amount in the turnBoost constrain, or divide the centerSensor by a larger number, which will make
turnBoost say smaller and thus have less effect.

I’ve made the edits to the following example. Remember the entire Arduino code can be found in
the Companion Code archive.

I would suggest you play with the numbers and see if you can make a new light seeking behavior
of your own. There are thousands of ways you could make Wink chase light (or run away from
light?). You’ve learned enough now to really make that happen!

3

Advanced Light Seeking Lesson 12

SKILL
LEVEL

Learn to Code - Ch12 Rev01.1 ~ Plum Geek

Add new code to calculate turnBoost based
on centerSensor

Add new turnBoost value to the existing
motors() functions for both cases

Declare new turnBoost variable

int leftSensor, rightSensor, centerSensor;

int speedBoost = 0;

int turnBoost;

int sensorDiff, motorSpeed;

int baseMotorSpeed = 20;

int restingLightLevel = 10;

int screamLight = 900;

void loop(){

 eyesOff();

 delay(4);

 leftSensor = analogRead(AmbientSenseLeft);

 rightSensor = analogRead(AmbientSenseRight);

 centerSensor = analogRead(AmbientSenseCenter);

 eyesCyan(speedBoost);

 //.. removed to save space on this page (see companion code)

 turnBoost = 50 - (centerSensor / 20);

 turnBoost = constrain(turnBoost, 0, 50);

 if(centerSensor > screamLight){

 eyesRed(250);

 digitalWrite(Beeper, HIGH);

 }

 else{

 digitalWrite(Beeper, LOW);

 }

 if(rightSensor>leftSensor){

 motors((motorSpeed+turnBoost),(motorSpeed-sensorDiff-turnBoost));

 }

 else{

 motors((motorSpeed-sensorDiff-turnBoost),(motorSpeed+turnBoost));

 }

 delay(20);

} //end of loop()

Wink_Ch12AdvLightSeek_Ex09

3

Advanced Light Seeking Lesson 12

SKILL
LEVEL

