
1
SKILL
LEVEL Learn to Code - Ch05 Rev01.2 ~ Plum Geek

Drag Racing Lesson 5

Now that you know a few basics, it’s time to put these simple bits together to do something
fun. It’s time to see how fast we can make Wink drive! Everyone enjoys a good race. In
this lesson you’ll apply the skills you’ve already learned to make Wink go though a racing
sequence.

Before we start writing code, let’s consider what we’re trying to do. It’s always a good idea
to take a few minutes before you start writing code to plan out what the program needs to
do. This will save you from writing unnecessary code. It will also help you keep your code
more organized as you’ll be following a plan.

I’ve come up with this list of steps to follow.

 1) To begin our race, we’ll want to wait for Wink’s button to be pressed. This is
 what will start the racing sequence.

 2) Once the button is pressed, we’ll want some sort of count-down sequence. Kind
 of like “ready, set, go!”

 3) After the count down, we’ll want to make Wink start driving as fast as possible!

 4) After the race goes for a while, we’ll want to stop Wink’s motors so he doesn’t
 keep driving forever.

Planning your program can be done in many ways. You can make a simple list of steps as
I’ve done above, or you may scribble a diagram of your program on a piece of paper (this
is my own favorite method for planning things). For more complex programs, it is useful to
draw a program flow chart that clearly shows all the steps of your program. I’ve created a
flow chart of our racing program below.

Time for fun!

Start Program

Wait for Button

Count Down

Go!

delay()

Stop Moving

1
SKILL
LEVEL Learn to Code - Ch05 Rev01.2 ~ Plum Geek

Lets start with a basic example to get us started. Try this code.

Load this code onto Wink and give him a try. You will likely notice two things when you try to run
this. The first is that the robot probably doesn’t drive exactly straight. There is no way for Wink to
know where he is facing - he’s just running his motors at max speed. With all mechanical devices
(like robots), it will be true that one motor will run slightly faster than the other. It is also true that
one motor will get slightly better grip with the running surface. We’ll consider this in a moment.

The second thing you will probably notice is that Wink may tend to “spin out” and loose control.
This is because we’re very quickly going from motors not moving to motors moving very fast. This
causes the motors to loose traction with the surface. Real race cars have the same problem if they
accelerate too quickly.

Let’s consider how we may adjust a few things to solve these problems.

void setup(){

 hardwareBegin(); //initialize Wink’s hardware

 playStartChirp(); //Play startup chirp and blink eyes

}

void loop(){

 waitForButton(); //wait here till’ button pressed

 //first blink

 eyesRed(); //make eyes red

 chirp(1500); //chirp 1.5 seconds

 eyesOff(); //turn eyes back off

 delay(100);

 //second blink

 eyesGreen(); //eyes green

 chirp(25); //quick start chirp

 //GO!!

 motors(255,255); //both motors max speed forward

 //wait for race to finish

 delay(1000); //race for 1 second

 //STOP!

 beStill(); //stop moving

 eyesOff(); //turn eyes back off

}

Wink_Ch05racing_Ex01

Normal setup

Wait for button to be pressed

This section controls the first blink of the
eyes. You can experiment with this part if
you like.

This second “blink” is the eyes going
green and emitting a short chirp right
before starting to race.

Drive at max speed!

This section controls how long the “race”
lasts before stopping.

This section stops the motors. Don’t forget
to turn the eyes back off also.

Drag Racing Lesson 5

1
SKILL
LEVEL Learn to Code - Ch05 Rev01.2 ~ Plum Geek

When we run motors(255,255); we are causing the motors to instantly begin spinning at
maximum speed. This causes the motor tips to loose traction with the surface, just like a
race car doing a burnout. The trick is to increase the speed in a more controlled way. We
can do this with the accelerateMotors() function.

This function requires you to include three values to make it work. The function basically
goes from one motor speed to a different motor speed, one step at a time. We need to tell
it what speed to start at, and what speed to end at. We also need to tell it how quickly to
move from one speed to the next. These are the three values.

You use the function like this...

When you see a function, like accelerateMotors() described, often you will see descriptions
of the values to be included with the function as words that describe what the values do.
In the above example, I’ve written “startSpeed” in the space where the first value is to be
written. When you write your code, you don’t actually put the words “startSpeed” in this
space - instead you put an actual number, like 0, or 100, or something else. We just use
the words to describe what each value is used for, and what order to place the values into
the function. In this case we see the first value is the starting speed.

As we’re sitting still when we begin, we’ll put a zero here in our actual code. The next
value is the ending speed. This is the speed the motors will be going when the function
completes. The final value is stepTime. This value is the amount of microseconds that will
pass before incrementing the motor speed.

Lets look at an actual example then describe what it will do.

In this example, when the function is called, it will set both motors to zero speed. It will then
wait for 2000 microseconds, then it will set each motor to speed 1. Then wait another 2000
microseconds, then set speed to 2, then wait 2000 microseconds, then set speed 3, and so
on. This will continue until the end speed of 100 is reached. The function will then complete
and the next line of your code will be run. By changing the stepTime value, you can make
the acceleration take a very long time if you set the value high, or very quick if you set the
value low.

I have found that an acceleration from 0 to 240, with a stepTime of about 1500 works well.
Remember that there are 1000 microseconds in every millisecond, and there are 1000
milliseconds in every second. We can figure out how long this acceleration will take by
doing some quick math. As there are 240 steps, and there are 1500 microseconds per step,

Controlling Acceleration...

accelerateMotors(0,100,2000);

Start at zero speed, and move eventually
to 100 speed, waiting 2000 microseconds
at each step along the way.

accelerateMotors(startSpeed, endSpeed, stepTime);

Drag Racing Lesson 5

1
SKILL
LEVEL Learn to Code - Ch05 Rev01.2 ~ Plum Geek

we can multiply 240 times 1500, which equals 360,000 microseconds total. If we
divide this by 1000, we arrive at the number of milliseconds.

240 * 1500 = 360,000 microseconds

microseconds / 1000 = milliseconds

360,000 / 100 = 360 milliseconds

Because we know there are 1000 milliseconds in every second, we can see this
acceleration will take about a third of a second to complete.

Lets add this to our previous example and give it a try. We should see that Wink is
less likely to spin out and loose control.

void setup(){

 hardwareBegin(); //initialize Wink’s hardware

 playStartChirp(); //Play startup chirp and blink eyes

}

void loop(){

 waitForButton(); //wait here till’ button pressed

 //first blink

 eyesRed(); //make eyes red

 chirp(1500); //chirp 1.5 seconds

 eyesOff(); //turn eyes back off

 delay(100);

 //second blink

 eyesGreen(); //eyes green

 chirp(25); //quick start chirp

 //GO!!

 accelerateMotors(0,240,1500); //accelerate in a controlled way

 motors(255,255); //both motors max speed forward

 //wait for race to finish

 delay(1000); //race for 1 second

 //STOP!

 beStill(); //stop moving

 eyesOff(); //turn eyes back off

}

Wink_Ch05racing_Ex02

Add the accelerateMotors() function here.
This function will run first causing Wink
to accelerate in a controlled way. After
the acceleration is completed, the next
function motors(255,255) will run which
will make both motors begin running at
maximum speed forward.

Drag Racing Lesson 5

1
SKILL
LEVEL Learn to Code - Ch05 Rev01.2 ~ Plum Geek

As we have discussed, when two wheels (or bug feet) are driven by two different motors,
it is true that one motor will always run a bit faster than the other. There are very slight
differences in the internal structure of each individual motor when manufactured, so we will
always see some difference even if they are powered from the same battery. Each Wink
robot will tend to behave differently in this way. You may get extremely lucky and find that
your Wink wants to drive in a generally straight line when both motors are set to the same
speed, but more than likely, you’ll realize your Wink always wants to steer to the right, or
maybe, to the left.

We can make him less likely to steer in this direction if we adjust the speed of one of the
motors in our code. Have a look at the picture below.

As you can see from this picture, if your Wink tends to steer to the left, it is because his
RIGHT motor is moving a bit faster than the left. The opposite is true if he wants to steer
toward the right. If he wants to always steer to the right, it is because his LEFT motor is
moving a bit faster.

We can adjust for this in our code. We can set different speed values for each motor in
the motors() function in the GO! section of our program. Try making the changes below
depending on which direction your Wink wants to go.

If your Wink wants to steer toward the LEFT, then try this change...

If your Wink wants to steer toward the RIGHT, then try this change...

Making the path more straight...

motors(255,245); //make the RIGHT motor a bit slower

motors(245,255); //make the LEFT motor a bit slower

Start at zero speed, and move eventually
to 100 speed, waiting 2000 microseconds
at each step along the way.

Start at zero speed, and move eventually
to 100 speed, waiting 2000 microseconds
at each step along the way.

Drag Racing Lesson 5

1
SKILL
LEVEL Learn to Code - Ch05 Rev01.2 ~ Plum Geek

With a bit of trial and error, you will eventually arrive at values for the motors() function that
will produce a path that is generally straight for your specific Wink robot. You shouldn’t have
to make the values different by more than 20 in most cases. Try adjusting in steps of 5 until
you dial in on the best speed for your robot.

To race the robots, pair up with a friend who also has a Wink robot. Find a nice long racing
surface like a long table or an open area of the floor. If you do race on the table, be sure to
have some helpers stationed along the table to catch any Winks that try to jump off the race
course. If you do race on the floor, try to designate a safe “race track” area and ask others
to avoid walking in that area. We don’t want any smushed bugs!

Note that you will also want to adjust the delay(1000); value in the “wait for race to finish”
section depending on your racing area. If you have a big open strip of clear floor, you can
make this value larger so the Winks will run a longer distance. If you’re limited to a small
space on a table, then reduce this a bit so the robots are less likely to jump off the end.
Remember that delay(1000); is one second. To make the race run for 2 seconds, you would
change this to delay(2000);.

Set up your Wink robots at one end of the race area, then one person can count off “On
your mark, get set, GO!”. Each racer should push the button on their Wink when they hear
“GO!”. You’ll then have one and a half seconds to make sure your Wink is pointed straight
down the track before they take off.

Sometimes you’ll get lucky and have a nice clean run. Sometimes you’ll still spin out, and
sometimes you’ll still veer off the track one way or another. This happens in real drag racing
as well. There’s no telling how a given race will end.

Between races you can continue to tune your code to help your Wink run at his best. If your
Wink tends to turn a bit on launch then goes straight, you’re probably still loosing traction
and accelerating the motors too fast. If this happens, try making the stepTime a bit longer in
your accelerateMotors() function. If you’re not having any trouble loosing traction, you can
reduce this time a bit. This will result in a faster acceleration and a possible early lead, but
you’ll also be more likely to spin out. It’s your call.

You may also realize that a lower top speed can result in a more controlled run.

Feel free to play with the values in this example all you want. You can change the color of
Wink’s eyes during the race by using the eyes functions you learned earlier. You can also
make different eye blink sequences to flash before launching in the count down section. Get
creative and have fun!

Eventually we’ll learn about a cool programming idea called a “for” loop, which does a
certain thing ‘for’ a certain amount of times. We’ll eventually use the “for” loop to make the
starting sequence a bit more interesting.

Racing Winks!!

Drag Racing Lesson 5

