Detecting Barriers Lesson 10

An Invisible Headlight...

Wink has a special light under his nose. This light is on the bottom side of the circuit E'a
board at the very front edge. It is yellowish clear and has a round dome facing toward the
front. Have a look at your robot and see if you can find it.

This special light can be turned on by your code. When the light turns on, you can’t see it with your
own eyes, because your eyes are not sensitive to the specific wavelength of light it produces, but
there is indeed light coming out. Remember in the previous lessons where we used Wink’s ambient
light sensors to see a flashlight? These ambient light sensors can also see this “invisible” light
produced by the special light under Wink’s nose.

We will refer to this special light as a “Headlight” because it is placed about where you would
expect a robot to have a headlight.

Study the picture below to get an idea of how we can use this headlight to see objects in front of
Wink.

The drawing is a side view of Wink’s nose. It shows Wink’s headlight on the bottom side, his circuit
board, and the ambient light sensor on the top side of the circuit board. You can also see the
surface Wink is sitting on and a barrier in front of Wink’s nose. The yellow area shows where the
invisible light shines and the orange arrow shows that some of this light will reflect off the barrier
and return back to Wink’s ambient light sensor.

As Wink gets closer to the barrier, more and more light will reflect off the barrier to the ambient

light sensor.
Ambient Light
Sensor
Wink Circuit Board
\ -
Infrared Headlight-/_>D
Wink Side View
SKILL

LEVEL Learn to Code - Ch10 Revol.1 ~ Plum Geek

Detecting Barriers Lesson 10

Ambient Light ™
Sensor E 3

Wink Circuit Board
k

Infrared Headlight-/_>D

Wink Side View

We should also consider what happens if no barrier is present. As you can see from the above
picture, some of the light produced by the headlight will shine on the running surface and in most
cases, a small amount of this light will reflect back off the surface and be seen by the ambient

light sensor. We will need to keep this in mind as we eventually try to sense whether or not a
barrier is present.

Here are a few things to remember about different barriers and surfaces.

* A barrier that is lighter color (like white) will tend to reflect much more light than a barrier that
is a darker color. This makes sense because darker colors are “dark” because they absorb
light waves.

* A similar thing happens with the running surface. A light color surface (like white paper) will
reflect more of the light than a darker surface (like a black or brown colored desk).

SKILL
LEVEL Learn to Code - Ch10 Revol.1 ~ Plum Geek

Detecting Barriers Lesson 10

Using digitalWrite...

In the next few examples, you will see a new function called digitalWrite. All of the little E.g
electrical connections on Wink’s brain are wired to his different parts through electrical

traces on the circuit board. digitalWrite is the primary function used in the Arduino

environment to turn these connections on and off. Each connection has a tiny electrical

switch inside Wink’s brain and digitalWrite is the function used to turn this little switch on and

off.

In electronics, the word “digital” is used to describe a switch that can be either on or off, but
not somewhere in between. When the switch is turned “on” it is said to be “high”. When the
switch is turned “off”, it is said to be “low”.

Using digitalWrite is easy. You simply tell the function which connection to turn on or off, then
you tell it whether to set this connection “high” to turn it on, or to set it “low” to turn if off.

The people who design electronics call the little electrical connections on electronic parts
“pins”. We can give these pins meaningful names in our code. The pin that controls Wink’s
headlight is called “Headlight”.

(If you're interested, these pins are actually named in the tab called WinkHardware.h You can
see them listed toward the top of the code on that tab. We’ll touch on that in a later lesson).

Here is an example of how digitalWrite is used...

digitalWrite(Headlight, HIGH); //turn on IR Headlight } Examples of how to use digitalWrite to turn a

digitalWrite(Headlight, LOW); //turn off IR Headlight connection on or off.

The first item included in digitalWrite is the name of the pin you would like to control. You then tell
the function whether to set this pin HIGH or LOW. Notice there is a comma after “Headlight” and
the word HIGH or LOW must be all capital letters.

SKILL
LEVEL Learn to Code - Ch10 RevO1.1 ~ Plum Geek

Detecting Barriers Lesson 10

How to sense a barrier...

As we’ve seen from the previous pictures, we can shine Wink’s headlight and measure E.a
how much light gets reflected back to his ambient light sensors. That sounds simple enough.
Let’s try a quick example and see what happens.

int centerlLight; //declare variable

void loop(){

digitalWrite(Headlight, HIGH); //turn on IR Headlight
centerLight = analogRead(AmbientSenseCenter); //read sensor

Use digitalWrite to turn on Headlight

-

Read center light sensor

if (centerLight < 100) //if centerLight < 100)

{
motors(100,100); //drive forward

}

else //otherwise...

{

} If the light reflected is less than 100, drive
forward. Otherwise, stop the motors.

motors(e,0); //be still J

¥
} //end of loop()

Wink_Chl0Barrier_Ex01

Load up this code and see how Wink responds. He should drive forward when nothing is in front
of him, then stop if he gets close to an object like your hand or a piece of paper. Try with different
barrier objects and also try on different surfaces. Once the center light sensor crosses a threshold
of 100, his motors will stop.

As with our other examples, after playing for a while, you may notice a few strange things
happening. First off, you may notice that Wink has to get really close to an object to make him
stop. The other thing you may notice is that Wink doesn’t want to drive at all. He may just sit there.
What would cause this?

Remember that when we read the light sensor, we are reading the total amount of light falling on
the sensor. This amount includes any light reflected from a barrier from the headlight, as well as
any light from the headlight that was reflected from the surface. It also includes any other light that
was already present in the room. For this reason, simply placing Wink in a brighter location in the
room will make him stop driving. Anything that causes the light level to rise above 100 will make
our “if” condition false and will cause Wink to stop moving.

So what is the best threshold value to use? (A “threshold” by the way, is a word often used in
robotics, electronics, and programming to refer to any value where something specific happens). In
this case we really need to know what the light sensor is reading so we can set this threshold to a
good value. Remember the Serial.print() lesson earlier?

SKILL
LEVEL Learn to Code - Ch10 RevO1.1 ~ Plum Geek

Detecting Barriers Lesson 10

Let’s use a Serial.print() function so Wink can tell us how much light he is seeing when
he reads his sensor. We will insert this right after the sensor is measured. =

int centerLight; //declare variable

void loop(){

digitalWrite(Headlight, HIGH); //turn on IR Headlight

centerLight = analogRead(AmbientSenseCenter); //read sensor Same example as before, except we add

Serial.println(centerLight) //print light level Serial.printin() to print the centerLight level
to the Arduino Serial Monitor.
if (centerLight < 100) //if centerLight < 100
{
motors(100,100); //drive forward
3
else //otherwise...
{
motors(0,0); //be still

}
} //end of loop()

Wink_Chl0Barrier_Ex02

Open your serial monitor and see what readings you are getting from the light sensor. See how
this changes when you place Wink on the running surface, how it changes when you pick him up,
and how it changes as you place your hand in front of his nose.

As you move your hand closer, you should see this number go up. The closer your hand gets, the
more light will reflect from your hand which will cause the sensor to see more light and increase
the value. If you have a lot of light in your room, see how this value changes as you face Wink
toward a light.

As you can see, this value can change a lot depending on what surface he is on and how much
other light is present. Try to adjust the threshold value from the starting point of 100 and see if
you can make Wink respond better.

You may quickly realize it’s very hard to find a good threshold. If you lower the threshold, Wink
will be more sensitive and he will see your hand further away. But this introduces another
problem: when you make the threshold too low, Wink will stop moving just from the light already
present in the room, or from the light reflected from the running surface.

Do you have any idea how we can solve this problem? We want Wink to be as sensitive as
possible (so he sees the object further away) but the room light and the light from the surface are
making this difficult. Think about that for a while or discuss with your group then go on to the next

page.

SKILL
LEVEL Learn to Code - Ch10 RevO1.1 ~ Plum Geek

Detecting Barriers Lesson 10

How to remove the effect of ambient light...

An easy way to remove the effect of the ambient light already present in the room =
is to take two different measurements of the ambient light sensor. ()

We can measure the sensor one time with the headlight turned off and store the result in

a variable. We can then turn the headlight on and measure the sensor a second time. This
second value will include the amount of light reflected from a barrier and it will also include
the amount of light that was already present from the room.

If we subtract the first value from the second value, we can effectively remove the amount of
light that was already present in the room. The result will be the amount that was reflected
from the barrier and the surface only. Study this example...

int centerLightOff; //declare variables
int centerLightOn;
int centerLightOnly;

void loop(){

Measure the light sensor with the IR
headlight turned off. This measures how
much light is already present in the room.

digitalWrite(Headlight, LOW); //turn off IR Headlight
delay(1); //delay 1 millisecond
centerLightOff = analogRead(AmbientSenseCenter); //read sensor

Measure the light sensor with the IR
headlight turned on. This measures room
light as well as IR headlight light.

digitalWrite(Headlight, HIGH); //turn on IR Headlight
delay(1); //delay 1 millisecond
centerLightOn = analogRead(AmbientSenseCenter); //read sensor
Subtract the first measurement from the
second. The result is light from the headlight
only.

centerLightOnly = centerLightOn - centerLightOff;

Serial.println(centerLightOnly); //print light level

S =

Use Serial.printin to print value to screen.

} //end of loop()

Wink_Chl10Barrier Ex03

In this example we’re measuring the amount of light with the headlight off, then with the headlight
turned on. When we subtract the headlight off value from the headlight on value, we will be left
with only the amount of light that was produced by the headlight reflecting off of the surface or
any obstacle. We then use Serial.printin() to display this value to the serial monitor.

We also wait a delay of one millisecond after turning the headlight on or off. This is because it
takes a short amount of time for the sensor to react to the new light level. We need to wait this
short delay so the sensor will read the correct value after it is stabilized to its new level.

Load this example onto Wink and experiment by placing Wink on and off of the surface and
putting your hand in front of him. When you are holding Wink away from the surface and your
hand is not near his nose, the amount should be very low because there’s nothing to reflect the
light off of.

SKILL
LEVEL Learn to Code - Ch10 RevO1.1 ~ Plum Geek

Detecting Barriers Lesson 10

Place Wink on the running surface you intend to use and see what values you are

seeing when placing your hand a distance in front of him. See how close you need to =/
get your hand to make this value start to rise. Pick a value somewhere between the lower E-Q
“no hand present” value and the higher “hand is present” value. Remember this number. This

will be a good threshold value for the next example. We are going to take the example above

and add on the “if” CS with some code to control the motors.

int centerLightOff; //declare variables
int centerLightOn;
int centerLightOnly;

void loop(){

digitalWrite(Headlight, LOW); //turn off IR Headlight
delay(1); //delay 1 millisecond
centerLightOff = analogRead(AmbientSenseCenter); //read sensor
digitalWrite(Headlight, HIGH); //turn on IR Headlight
delay(1); //delay 1 millisecond
centerLightOn = analogRead(AmbientSenseCenter); //read sensor

centerLightOnly = centerLightOn - centerLightOff;

Serial.println(centerLightOnly); //print light level

if (centerLightOnly < 15) //if centerLight < 15 } Adjust threshold here. 15 is a good starting

C value for a dark table, and 90 to 100 is a
motors(100,100); Hdrve forere good starting value for a white table or white

3 paper.

else //otherwise...

{
motors(0,0); //be still

3

} //end of loop()

Wink_Chl0Barrier Ex04

Experiment with the threshold value unit you get something that works well. If Wink tends to stop,
or stop and go without your hand present, then raise the threshold a bit. (This can happen if the
light reflected from the surface is enough to exceed the threshold). Keep in mind that as Wink
rocks forward, he is looking more directly at the surface, so the amount of light he sees from the
surface will increase.

If Wink has to get very close to your hand before he stops, then lower the threshold a bit.

SKILL

LEVEL Learn to Code - Ch10 RevO1.1 ~ Plum Geek

Detecting Barriers Lesson 10

Dealing with light reflected from the surface...

So now we have our robot working pretty well, except we still need to provide a =
threshold number that changes depending on what surface Wink is driving on. It can be E'a
annoying to have to measure and test this number every time Wink changes surfaces.

We can deal with the light reflected from the surface in many different ways. | am going to
share a method that is fairly simple. There are other ways that may work somewhat better,
but they are more complex and beyond the level of this lesson.

The basic idea is to take a measurement while Wink is sitting still on the surface, with no
barrier in front of him. We can store this measurement in a variable. As long as the surface
doesn’t change in brightness, then this initial measurement can be used as a “baseline” that
represents the amount of light we can usually expect to be reflected from the surface.

Once this “baseline” value is known, Wink can begin driving around and taking more
measurements along the way. He can compare each new measurement to this baseline
measurement, and if the new measurement increases by a certain amount above the
baseline value, we can assume a barrier is present.

Scary code warning...

The code on the next page looks scary, but it’s not so bad. It’s the longest example you’'ve seen
so far but please don’t let that scare you. In a future lesson we're going to learn how to write our
own “functions” that we will use to make this code much shorter easier to understand.

The reason the next example looks so long is mostly because we’re repeating the large block
of code that turns the headlight off and on, reads the ambient sensor, and subtracts the two
readings.

In the next example, we are doing exactly what | described above. Notice there is now a large
block of code inside the setup() function. Up to this point, we haven’t added any significant code
to setup(). The setup() is a great place to put code that you only want to run one time at startup.
This is a perfect place to put the code to read the sensor to get our “baseline” reflected light.

You will also notice that we have declared our variables this time before the setup() function. Any
variable needs to be declared before it can be used. Because we are using some of our variables
in the code inside our setup() function, we need to move the declarations above the setup() or
the program won’t compile.

Study the code in the next example then load it on to Wink. From the time Wink turns on and you
hear the start chirp, you have two seconds to put Wink down on the surface before he runs the
code to get his baseline measurement.

If you don’t set him down quickly enough, this baseline will not be correct. This is also true if you
change surfaces. If you need to re-set Wink’s baseline value, turn him off with the PWR button,
then turn him back on. The program will start from the beginning with the start chirp and a fresh
two second delay.

SKILL

LEVEL Learn to Code - Ch10 RevO1.1 ~ Plum Geek

Detecting Barriers Lesson 10

#include “WinkHardware.h”

int centerLightOff,centerLightOn,centerLightOnly; .
J J : v } Declare variables before setup()

int baseline,threshold;

void setup(){

hard Begi ; .
ardwareBegin(); } Normal setup functions
playStartChirp();
delay(2000); //wait 2 seconds } Wait 2 seconds to put Wink down on surface
digitalWrite(Headlight, LOW); //turn off IR Headlight T
delay(1); //delay 1 millisecond

Read sensor with Headlight turned off then
turned on. Subtract the two. If this is done

} with no barrier present, but still sitting on the
surface, then “baseline” should have only the
amount of light reflected from the surface.

centerLightOff = analogRead(AmbientSenseCenter); //read sensor

digitalWrite(Headlight, HIGH); //turn on IR Headlight
delay(1); //delay 1 millisecond
centerLightOn = analogRead(AmbientSenseCenter); //read sensor

baseline = centerLightOn - centerLightOff; //subtract values
threshold = baseline + 10; } Set “threshold” to baseline plus 10. By

3 adjusting this “10” value you can set how
sensitive Wink will be.

void loop(){

digitalWrite(Headlight, LOW); //turn off IR Headlight \
delay(1); //delay 1 millisecond
centerLightOff = analogRead(AmbientSenseCenter); //read sensor

} This part is the same as our previous

digitalWrite(Headlight, HIGH); //turn on IR Headlight
delay(1); //delay 1 millisecond example.
centerLightOn = analogRead(AmbientSenseCenter); //read sensor
centerLightOnly = centerLightOn - centerLightOff; J
if (centerLightOnly < threshold) //threshold from above } This time we’re going to compare
{ centerLightOnly to the value in “threshold”
motors(100,100); //drive forward which was determined in our setup() function
} above.
else //otherwise...
{
motors(0,9); //be still
3

} //end of loop()

Wink_Chl0Barrier Ex05

SKILL
LEVEL Learn to Code - Ch10 RevO1.1 ~ Plum Geek

Detecting Barriers Lesson 10

Load the above example then play with Wink for a while. In most cases he will do a
good job of getting a baseline for your exact surface. I'll remind you again that when Wink =/
makes the reading to set his baseline (two seconds after the start chirp and right before he E.a
starts moving) it is important to have no obstacles or fingers in front of him. Try to give him

at least 4 to 5 inches of open space in front while he makes this measurement.

To adjust the sensitivity, play with the value in the last line of the setup() function. Lower
values will allow him to see barriers further away.

Adjust the “10” value to set how sensitive
} Wink will be. Lower numbers make him more
sensitive to seeing an obstacle.

threshold = baseline + 10;

Lets consider what is happening with this line of code. Remember the value in “baseline” is the
amount of light being reflected from the running surface. We are then adding 10 to this value

and storing it in the variable “threshold”. Later in our code, in the “if” CS, we determine if the
centerLightOnly value is less than this threshold value. If it is less, then the motors go forward. If
it is no longer less than, the motors will stop moving.

This basically means that if a barrier or object causes the value to increase by more than 10
above the baseline value calculated in the setup() function, that the motors will stop.

If this value is made lower, then the threshold is lower. This means Wink can see an object further
away, but it also means that as he rocks around on the surface, he may be more likely to think he
sees a barrier even if a barrier is not present.

Another challenge...

Now you know how to sense a barrier in front of Wink. Let’s add one more step to the previous
example as a final challenge for this lesson. In the code above, Wink will drive forward until he
sees a barrier then stop. Once the barrier is moved away, he will start moving again.

You have probably noticed that if you put your hand in front of him, then slowly move your hand
back away from him, he will continue driving forward following your hand. He will tend to remain
about the same distance away from your hand each time.

In this next challenge, lets see if we can make him back up when your hand gets closer. We will
build on the previous example so that he drives until he sees your hand then stops. But if you
then move your hand closer to Wink, can we make him back up and move away?

Remember that as your hand gets closer to Wink, the amount of light he measures will become

larger and larger. Can we use “if”, “else if”, and “else” to make Wink either drive forward, drive
backward, or be still?

In this new example, we want to establish a threshold where Wink will stop driving forward, then
a different larger threshold where he will drive backward. Consider how you may do this then
continue to the next example.

SKILL
LEVEL Learn to Code - Ch10 RevO1.1 ~ Plum Geek

Detecting Barriers Lesson 10

Challenge: Wink backs up from barrier...

There are many ways to solve this challenge. Here is what | came up with. In this E-a
example, | create a second threshold value, then add another condition to our “if” CS down

below. This should cause Wink to move toward your hand and stop, then move back away

from your hand if you move toward him. You can play with the two threshold values in the

setup() to adjust how sensitive Wink is. You can also adjust his speed by changing the motor

speeds down below. Experiment and have fun, then write your own code that makes Wink do
something when he sees a barrier.

int centerLightOff,centerLightOn,centerLightOnly;

int baseline,stopThreshold,revThreshold; } using “stopThreshold” and “revThreshold” for
our two threshold levels

void setup(){

//... the rest of setup() same as last example } First part of setup() same as before
stopThreshold = baseline + 10; } Added “revThreshold”
revThreshold = baseline + 15; ed new revinresho

void loop(){

digitalWrite(Headlight, LOW); //turn off IR Headlight
delay(1); //delay 1 millisecond
centerLightOff = analogRead(AmbientSenseCenter); //read sensor

digitalWrite(Headlight, HIGH); //turn on IR Headlight
delay(1); //delay 1 millisecond

centerLightOn = analogRead(AmbientSenseCenter); //read sensor

centerLightOnly = centerLightOn - centerLightOff;

if terLightOnly < stopTh hold //”stop” th hold . .

if (centerLightOnly < stopThreshold) Sl resno If the light level is less than the

¢ “stopThreshold” value, Wink must be far from
motors(100,100); //drive forward

: a barrier. Drive in forward direction.

else if (centerLightOnly > revThreshold) //”reverse” threshold Else If the light level is greater than the

{ “revThreshold” value, Wink must be really
motors(-100,-100); /fdrive backward close to a barrier. Drive in reverse direction.

3

else //otherwise...

{

Else, light level must be between the two

motors(0,0); //be still 9 .

) thresholds. Stop moving.

} //end of loop()

Wink_Chl0Barrier Ex06

SKILL
LEVEL Learn to Code - Ch10 RevO1.1 ~ Plum Geek

