
Learn to Code - Ch06 Rev01.2 ~ Plum Geek

Variables Lesson 6

Let’s talk about one of the most important things in any programming language. It’s
called a “variable”. Don’t let the name scare you. What it does is really simple. A variable is
like a post-it note or a scrap of paper you can use to remember a number.

Imagine you have a task where you need to remember how many birds, squirrels, and dinosaurs
you see outside your window during the week. I track my own count of birds, squirrels, and
dinosaurs using post-it notes stuck to my window. Each note is labeled: “birds”, “squirrels”, and
“dinosaurs”. Then I keep track of each count on the corresponding post-it note.

Computers keep track of numbers in a similar way, except instead of using post-it notes, they use
spaces in their memory. A variable is just a way to name a certain spot in memory so you can
store a number in that memory space, then use that number again later.

You can name a variable almost anything you want. Normally you’ll pick a name that makes sense
and relates to whatever you plan to store in the variable. In this case, “birds” makes sense if you
are counting how many birds you’ve seen this week. You could keep track of birds using a variable
named “lostSocks”, but that wouldn’t make much sense, though “lostSocks” would still work.

Lets consider this example...

Remembering numbers (and other stuff)...

birds = 10;

birds = 10; 	 //birds now holds 10

birds = 2 + 3;	 //birds now holds 5

birds = 10; 		 //birds now holds 10

birds = birds + 1;	 //birds now holds 11

This puts the number 10 inside the variable
named “birds”.

The second line adds 2 and 3, then takes
the result of that addition and puts it back in
“birds”. The previous value of 10 is erased
and replaced by the new value of 5.

The second line takes what ever value is
already present in “birds”, then adds 1 to
it, then takes the result and puts it back in
birds.

2
SKILL
LEVEL

This line of code will remove whatever was previously stored in the memory space named “birds”
and replace it with the number 10. This is also sometimes called an “assignment”, as in, the
number 10 is assigned to the “birds” variable. Experienced programmers would call the equals
sign an “assignment operator”, but you don’t need to remember that for now.

You can also store the results of math in a variable. Let’s consider this example...

You can also use the variable itself in the math if you want. This is often very useful, for example,
if you’re counting something. In the next example, we give “birds” a starting value. In the second
line, we use whatever is already in the variable and do some math on it, then put the result back
in the variable.

Learn to Code - Ch06 Rev01.2 ~ Plum Geek

SKILL
LEVEL

A variable declaration needs at least two things. The first part is the “type” of variable. There
are many different types of variables that can be declared depending on what you plan to store
in the variable. The first part of the declaration (“int” in this case) is the type of variable you
are declaring, and the second part (“jellyBeans” in this case) is the name you are giving to the
variable.

The “int” variable type stands for “integer”. This is a very flexible variable type and is commonly
used within Arduino code projects. The “int” variable type can store any whole number between
-32,768 and 32,767. You can NOT store decimal numbers in an “int” type. (More on that later).

You can name a variable almost anything you want as long as you follow a few simple rules.

1.	 Variable names can include upper case letters, lower case letters, digits (0 to 9), and the
underscore (_) character. No other characters or symbols are allowed.

2.	 Variables must begin with a letter or the underscore _ character. You can not begin a
variable name with a number. If you really need to begin a variable name with a number, it is
customary to place an underscore first followed by the number.

3.	 No spaces are allowed in the variable name. All characters and numbers must be run
together with no spaces. To create a variable out of several words, it is customary to run the
words together and capitalize the first letter of each word, with the first word always using all
lower-case letters.

4.	 Variable names can be up to 31 characters long. (They can be longer in some cases, but
as a general rule, try to keep it to 31 or less to guarantee your code can be understood by the
compiler that turns it into machine language).

5.	 The variable cannot be named any “reserved words”. These are special words that mean
something special to Arduino such as “break”. If you type the name of a variable and it changes
color on the screen, that is a good clue that it is probably a reserved word and cannot be used.
You can still incorporate reserved words in the name as long as it’s not an exact match to a
reserved word. For example you could name a variable “breakPoint”, but you can not name it
“break” by itself because the word “break” means something special.

Before you can actually use a variable for the first time, you have to tell the program
ahead of time that you plan to use it. This tells the processor to automatically reserve a
space in memory to hold the value you will eventually place inside the variable.

This process of telling the program that you plan to use a variable is called “declaring” the
variable. Kind of like, if you were going to count jelly beans, you may get a scrap of paper and
label it “jellyBeans” before you actually use it to count your beans. You only declare each variable
one time.

“Declaring” variables...

int jellyBeans; //this “declares” the variable jellyBeans

This is how you “declare” a variable. You
need to do this for every variable your
program uses.

Variables

2

Lesson 6

Learn to Code - Ch06 Rev01.2 ~ Plum Geek

SKILL
LEVEL

Every variable has a value stored in it, even if you have just declared it. Normally this
will be zero, but there’s no guarantee of this. In many cases, you will want your program to
set a variable to some meaningful value before it is used. If you plan to use your variable to
store the reading from a light sensor - the initial value doesn’t really matter because you’re going
to read the sensor before using the value, which will erase whatever value it started with.

But in other cases, like counting how many dinosaurs you’ve seen this week, you’ll probably want
it to begin with some specific known value, like 0. You can give the variable an initial value at the
same time you declare it if you want. This is optional, but considered good practice.

Initial value of a variable...

void loop(){

 Motors(200,100);		 //Arc to the right

 delay(3000);		 //wait 3 seconds

 Motors(100,200);		 //Spin to the left

 delay(3000);		 //wait 3 seconds

}

include WinkStuff.h

void setup(){

 hardwareBegin();

}

int loopCount = 0;

void loop(){		

 loopCount = loopCount + 1; //add 1 to loopCount

} //end of loop()	

Declares the variable “loopCount”, sets it
equal to 0.

Add 1 to loopCount every time the program
goes through the loop() function.

Wink_Ch06Vars_Ex01

int loopCount = 0; //declare loopCount and initialize it to 0

This statement declares the variable and also
specifically tells the program what its initial
value should be.

A working example...
Lets have a look at working example. This is similar to the examples you’ve already seen. It
declares the variable loopCount and makes sure it is set to a starting value of 0. Then the loop()
function begins. Each time the program goes through loop, “loopCount” is increased by 1. It
makes sense that we named it “loopCount” because that is exactly what we are storing in the
variable. (That is, a “count” of how many times the loop() function runs).

If you actually load this onto Wink, it won’t look like he’s doing anything, but he is really using all
his brain power to count loops as fast as he can. In the next lesson we’ll show you how to print
these values to your computer screen so you can see what he’s thinking. This is just a simple
example to show you how a variable can be used.

Variables

2

Lesson 6

Learn to Code - Ch06 Rev01.2 ~ Plum Geek

Here are a few other random tidbits about variables.

Roll Over: A variable will “roll over” if you try to give it a value outside the range it can store.
For example, if you populate a variable with the highest number it can store, then add one to
it, the value will “roll over” and become the lowest value it can store. This works the same in the
negative direction.

If you are ever working with a program and the variables seem to be giving you very strange
numbers, this could be the cause. The C language will not prevent you from rolling over a variable.
It is happy to let you make the mistake.

A few factoids about variables...

int x;

x = -32768;

x = x - 1; // x now contains 32,767 - rolls over in neg. direction

x = 32767;

x = x + 1; // x now contains -32,768 - rolls over

Source: Official Arduino Website
https://www.arduino.cc/en/Reference/Int

Memory Limits: You may already be wondering how many variables you can declare. This really
depends on how much memory you have available on the processor you are using. Wink has
2 KB of RAM memory (that is, about 2000 bytes). Each “int” variable requires 2 bytes, so you
could theoretically use 1000 different “int” variables in your program. However, Arduino, as well
as Wink’s background code (inside WinkStuff.h) claim about 300 bytes of the available 2000
bytes, but that still leaves you about 1700 bytes (about 850 “int” variables) that you can declare
and use.

It is unlikely that you will ever run out of memory on Wink. The only time you may press these
memory limits is if you’re using large arrays (that’s a Skill Level 3 topic, so don’t worry about it
now).

Memory Re-Use: Keep in mind that every time you load a program onto your Wink, all the
memory is erased and re-used. (Except for some special memory called EEPROM that keeps
values forever - we’ll discuss that later in Skill Level 3). For now, just know that you can keep
re-writing the memory over and over. If you use lots of variables in a given sketch, you won’t
eventually “run out of space” later on.

Variables

SKILL
LEVEL

2

Lesson 6

Learn to Code - Ch06 Rev01.2 ~ Plum Geek

We mentioned before that there are several different “types” of variables. We’ll briefly
discuss them here. There are even more types than we’ll cover, but these are the common
ones that will get you through almost anything you’ll ever need to do.

Variable
Type

Values Stored Bits Notes

byte 0 to 255 8 Number from 0 to 255, no negative numbers allowed.
char -128 to 127 8 Some compilers will try to interpret this variable type as a

Character (like a letter typed on your keyboard)
word 0 to 65535 16 This can count higher than “int” except you can’t use it to

store negative numbers.
int -32768 to 32767 16 This is the most common general purpose variable type. It

allows storage of fairly large numbers as well as negative
numbers.

unsigned long 0 to 4,294,967,295 32 This variable type is required to store the result of the millis()
function which returns the number of milliseconds the current
code has been running.

long -2,147,483,648 to
2,147,483,647

32 Useful for storing very large numbers that could be positive
or negative.

float -3.4028235 e38 to
3.4028235 e38

32 The “Floating Point” data type can store very large numbers
as well as decimal numbers. It is very flexible, though the
processor does need more time to process it. Use float data
types only when you really need the decimal function.

Other variable Types...

Note about variable Bit-Length: You’ll notice the “Bits” column in this chart. We’ll go deeper into
bits in Skill Level 3, but here’s a quick intro. Computers store values as sequences of 1’s and 0’s.
The “byte” variable type can be stored using a series of eight 1’s and 0’s, so we say it is “8 bits
long”. In order to store bigger numbers like the “word” variable type, eight bits isn’t enough. We
need a sequence of sixteen 1’s and 0’s to store a “word”. A “float” variable needs a sequence of
32 ones and zeros.

This doesn’t really matter now in our simple examples, but know that Wink’s brain (and all other
8-bit processors) can only “think” about 8 bits of information at once. Usually Wink can add a pair
of 8-bit numbers together in a single cycle. He can add 16 bit numbers together, but he has to
break them into several 8-bit cycles, and to do math on 32 bit numbers, he has to perform quite
a few 8-bit cycles. He performs 8 million cycles each second, so even handling 32 bit numbers is
extremely fast.

As a general rule it is a good idea to stick to 8 bit numbers if possible, with 16 bit as a second
choice, and leave 32 bit variable types only for when you really need them.

Variables

SKILL
LEVEL

2

Lesson 6

