Functions Lesson 13

We are now about to learn one of the most useful things about any programming
language. We are going to learn about Functions. Learning functions is important because —
they allow you re-use and organize your code in a very flexible way. E.a

What is a function?

Before we get into the details of how to write functions, lets discuss what they do and
how they work.

A function is basically a collection of code that can be triggered to run by a single line of code from
anywhere else in your program. The code inside a function can be really simple, or it can be very
complex.

Functions are an excellent way to write code that you are likely to use several times in your
program.

Let’s imagine you are writing code to control a large robot. You may occasionally want to go
measure temperatures on all the motors and actuators on the robot to make sure he isn’'t going
to over heat. Doing this on a complex robot may require 10 or 20 lines of code. Now imagine you
want to run this code each time you make the motors move. You could write these 10 or 20 lines
of code every time you wanted to move the motors, but that wouldn’t be very convenient. It would
clutter up your code, it would take up more space in the robot’s memory, and most important - if
you wanted to change how the sensors are read, you may have to change it in many different
places in your code and you’ll no doubt miss a few. This could cause all kinds of problems.

A much better solution is to write the 10 or 20 lines of code in a single place inside a Function.
You could then simply “call” this function anywhere else in your code where you wanted to measure
the motor temperatures. If you ever needed to change how this process worked, you could change
it in a single place inside your one single function.

You have actually been using Functions all this time throughout our lessons and didn’t even realize
it. All those times you used a word or set of words followed by parenthesis, you were actually
“calling” a function. For example, motors() is a function, eyesOff() is a function, analogRead() is a
function, digitalWrite() is a function, and even loop() is a function.

What you’'ve done up to this point is “calling” functions. That basically means you’re telling your
program to go off and execute the code in the function, then return back to your main program.

We already know how to call functions, because we’ve been doing so ever since the very beginning
with all the ‘eyes’ functions. In this lesson we’re finally going to learn how to write our own
functions to do whatever we want.

Let’s look at the actual motors() function on the next page...

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions

Lesson 13

You have been using the motors() function to control Wink’s motors. Below is the actual

code that is run each time you call the motors() function.

void motors(int LeftMotorSpeed, int RightMotorSpeed){

if(LeftMotorSpeed>MOTOR_MAX)
LeftMotorSpeed=MOTOR_MAX;
if(LeftMotorSpeed<-MOTOR_MAX)
LeftMotorSpeed=-MOTOR_MAX;
if(RightMotorSpeed>MOTOR_MAX)
RightMotorSpeed=MOTOR_MAX;
if(RightMotorSpeed<-MOTOR_MAX)
RightMotorSpeed=-MOTOR_MAX;

if(LeftMotorSpeed<@){
digitalWrite(MotorDirection_Left,0);
3
else{
digitalWrite(MotorDirection_Left,1);
3
if(RightMotorSpeed<o){
digitalWrite(MotorDirection_Right,0);
3
else{
digitalWrite(MotorDirection_Right,1);
3
analogWrite(MotorDrive_Left,abs(LeftMotorSpeed));
analogWrite(MotorDrive_Right,abs(RightMotorSpeed));

presentSpeedRight = RightMotorSpeed;
presentSpeedLeft = LeftMotorSpeed;

} Variables passed to the function

1

If you try to give motors a number that is
either larger than or smaller than maximum
speed of the motors (255 in our case), this
code constrains the speed to between -255
and +255. We could have also used the
constrain() function here.

Set motor direction pins. If you passed

the function a negative number, the motor
directions are set to O which is reverse. If
you passed the function a positive number,
the motor directions are set to 1 which is
forward.

This begins sending the actual drive signal to
the motor driver, which delivers power to the
motors.

Did you know you a pair of variables named
“presentSpeedRight” and “presentSpeedLeft”
will always tell you what speed the motors are
running? This is where those values are set.

| bet you never realized all the above code is being run each time you call motors() to change
the motor speed. You can find this function written in the WinkHardware tab along the top of your

Arduino window if you're interested.

Instead of writing all this code each time you want to change the speed of the motors, we've
included it all in a single function named “motors”. You can now make all this code run from
anywhere in your program by simply using a single line of code like “motors(100,100);”

SKILL
LEVEL

Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

Passing values to and from a function...

Depending on what your function needs to do, you may need to provide it with E-Q
some starting values. In other cases you may want the function to provide an answer
or result back to you.

Let’s consider how the motors functions work. When you call the motors() function, you

need to include two values. You need to tell the function which speed to make the left and
the right motors move. When you actually call the motors() function, you include a pair of
speed numbers with it, like “motors(150,150)” to make both motors run forward at speed 150.
If you don’t include the numbers inside the parenthesis, the function has no way to know
what new speed you want.

Remember from one of our first lessons on using the motors, you can call the function
beStill() to make Wink stop moving. The beStill() function does not require any extra values
or variables to run. This is because beStill() always sets the motors to speed 0. This is an
example of a function that always does the same thing each time it is run, and has no need
for any extra information or variables to accomplish the task it was written for.

There are other examples when you may want a function to return some value back to your
main program. For example, the function buttonPressed() returns a value. The function
returns a 1 if the button is being pressed, and returns a O if the button is not being pressed.

Let’s look at how a function is written. Let’s pretend we’re going to write a function named
“makeWinkGo”, and we want that function to automatically make Wink’s motors go at 100
speed. The function is written below with the important parts circled. We’'ll discuss on the

next page.
void(makeWinkGoXvoid){ This is the name of the function. You can
moto S @); name a function almost anything you want.
3} The naming rules are the same as variables.

This is the code inside the function. This is
what will run when the function is called.

void makeWinkG (VOid) } ;|-hIS is whe:e you .slf)zufy am./ value: or
motors(1®0,10®§,)[argulments yo.u .WI e passing to the

} function when it is called.

makeWinkGo(void){ } 'I;]hlsf is w.here);Io;;_[l)_z:z :)vha; kind of value
motors(1®®,1®®); the function wi ack to your
program.

3

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

v°idooo

So what’s with the word “void” you keep seeing all over our example code? I'm sure E.a
you’ve been curious about this. Maybe the people who designed the C language should

have chosen the word “nothing” instead. | suppose that “nothing” is a longer word to type

over and over, so maybe they settled on the word “void” instead. At any rate, the word “void”

in your program basically means “nothing”.

When you see the word “void” inside the parenthesis of a function, like the
makeWinkGo(void) example above, it means “nothing” is passed into the function when it is
called. In a similar way, when you see the word “void” at the start of a function, it means that
function does not return any values back to your program after it runs.

Parts of a Function...

You see the parts of the function on the previous page. The function begins with the type of data
that is returned by the function. If the function doesn’t return anything, we put “void” in this spot.

The next part is the name of the function. This is what you will use to “call” the function from
other places in your program. Functions have the same naming rules as variables. It is customary
to start a function name with a lower case letter. If your function needs muliple words, it is
customary to lower case the firs letter, then upper case the first letter of each additional word -
the same way variables are commonly named.

The next part is the parenthesis where you will indicate what values will be passed into the
function, and in what order those values will be passed into the function. These values are also
called “arguments” and sometimes they are called “parameters”. It all means pretty much the
same thing. If no arguments are to be passed into the function, write “void” inside the parenthesis.

The function then has an opening curley and a closing curley. All the code that will be run by the
function goes inside those curley braces. The curley braces for functions work just like the curley
braces in control structures like “if”, “for”, and “while”.

A working example...

The best way to learn is by actually doing something, so let’s start working with some real
examples. We are going to use our makeWinkGo example from above, but we’re going to make it
more useful. Instead of always making Wink go at a certain speed, we’ll make the function able to
accept a value from your program, so the speed can be easily changed.

void loop(){
makeWinkGo(150); //call function makeWinkGo, pass value “150”
}

This is how we call our new makeWinkGo
function from inside our normal loop().

void makeWinkGo(int goSpeed){ //define function “makeWinkGo” This is the actual makeWinkGo function.
motors(goSpeed,goSpeed); //make both motors go } Sometimes we say this is where a function is
3 “defined”.

Wink_Chl13Functions_Ex01

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Lesson 13

Functions

In this example, we see how the new function makeWinkGo is defined. We also see
how you can call this function from within your main loop() code. =/

Open up this example from the Companion Code archive that goes along with these lesson
plans to see how the whole thing works together. You can change the value passed into
makeWinkGo() to change how fast he will go.

Returning a value...

A function can “return” a value back to your program. Let’s write a simple program that adds two
numbers together, then returns the result. We're going to introduce a few important ideas in this
example, so follow along carefully with the explanation below.

int result; //declare “result” as a global variable

J Declare ‘result’ as a “global” variable.

void loop(){

result = addMe(3,2); //call addMe, store returned value in } The value of “answer” below is returned back
//the ‘result’ variable. and stored in “result”.

Serial.println(result); //print to serial monitor

delay(2000);

int addMe(int a, int b){ //define the function “addMe” Define our new “addMe” function

int answer; //declare local variable “answer”

answer = atb; //add the values passed, store in “answer”

return answer; //return back with the value in “answer”

Declare ‘answer’ as a “local” variable
Do the math, put result in “answer”
Return the value in “answer”

e

Wink_Chl3Functions_Ex02

First lets look at the function we’ve created named “addMe”. You can see that the function will
return an “int” data type. The function is named “addMe”, and it accepts two arguments inside the
parenthesis. The arguments are separated by commas. You have to tell the function what data
types will be passed into the function so it knows how to handle them. In this case the data type
for both arguments is “int”.

We also have to name each incoming argument something so we can reference the passed values
inside the function. In this case, we’'ve named the first argument “a” and the second argument is
named “b”. Once inside the function we can now reference these just like normal variables.

We’'ll use the variable “answer” to hold the result of the math. We need to declare it first, which
we have done inside the function. The last line of code inside the function is the “return”. The
“return” statement causes the function to stop running and go back to the main program with
whatever value specified in the statement. In this case we return the value in the “answer”
variable.

This “returned” value is then stored in the variable “result” in the main program where addMe was
first called. Expirement passing different values to addMe to prove it's working correctly.

SKILL
LEVEL

Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions

Lesson 13

“Global” and “Local” variables...

We introduced another new concept in this example, which becomes important once =

you start using functions. The concept is “global” variables and “local” variables.

A “global” variable is any variable that is declared outside of a function. A “local” variable is
any variable that is declared inside a function. Let’'s have another look at the same example

to discuss this idea.

int result; //declare “result” as a global variable
void loop(){
result = addMe(3,2); //call addMe, store returned value in
//the ‘result’ variable.
Serial.println(result); //print to serial monitor
delay(2000);

int addMe(int a, int b){ //define the function “addMe”
int answer; //declare local variable “answer”
answer = atb; //add the values passed, store in “answer”

return answer; //return back with the value in “answer”

J The variable “result” is a global variable
because it is declared outside of any
function. It is not inside setup() or loop() or
any other function.

} The variable “answer” is a local variable
because it is declared inside a function. The
variable “answer” can only be used within

3 this function.

Wink_Ch13Functions_Ex02

If a variable is “global”, that variable can be referenced from anywhere in any part of your
program, as well as any functions you may write. You can read it, or change it from anywhere.

If a variable is “local”, that variable can only be referenced from within the function that declared
it. In this case, we can use the variable “answer” as much as we want inside the addMe function.
But if we then try to use the variable “answer” inside the loop() function, the program will not
compile because the loop() function doesn’t know that the variable “answer” ever existed.

Why would we do this? It seems rather limiting. Why wouldn’t we just declare all variables in the
entire program as global variables?

Though you could certainly do this, let’'s discuss what actually happens in the processor’'s memory
when variables are declared. When a “global” variable is declared, the processor picks a spot

in its memory to store the value. That spot is then always reserved for the value of that specific
variable. No other part of your program can re-use that same spot in memory to store a different
variable because it has been reserved.

But when you declare a “local” variable, at the time the function runs, an spot in memory which

is not presently being used for anything is selected to hold the value of this “local” variable. This
spot in memory is used and reserved only as long as the function is running. As soon as the
function completes, this spot in memory is no longer reserved and another function could then use
the same spot in memory to hold its own local variables. This is often called “dynamic” memory.

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

By using dynamic memory, less memory is used overall. If a function is only running for

a brief time, and only needs that space in memory temporarily while it is running, there is =/
no reason we can’t let another function eventually use the same location in memory to store E'a
its own temporary values.

If we declared everything as global variables, we would waste a lot of space in memory that could
be more efficiently used by other functions.

You would normally declare global variables if you want the value to be more permanent and you
may want to reference that variable from many different places or functions of your program.

For example, you may have a global variable called presentTemperature. You may write a function
that turns on a temperature sensor, reads the sensor, does some math on the reading from the
sensor, then puts the final result into the presentTemperature variable. You could then reference
the presentTemperature variable from anywhere else in your program. You could use it in “if”
statements, you could use it to populate other variables, whatever.

In general, if you are writing a function, and the function needs to store a value, but only
temporarily while the function is running, you should declare this variable inside the function itself
so it becomes a local variable. This is what we have done with the “answer” variable, because the
“answer” variable is not needed any longer after the addMe function completes.

Passed arguments automatically become local variables...

We should also point out that the arguments passed into the function also automatically become
their own local variables. In our addMe example, when the function is called, a local variable
called “a” and a local variable called “b” are created. These local variables are populated with the
first and second values you included in the parenthesis when you called the addMe function from
your main program.

Writing a function for barrier detection...

Remember back to lesson 10 where we learned about barrier detection using Wink’s IR headlight.
In that lesson, we used a process of reading Wink’s front ambient sensor with the headlight on,
then off, then subtracting the two values. Lesson 10 Example 5 shows this process working.
Remember we had to repeat a block of code that was about seven lines long. We had to do this
each time we wanted to determine how much light was being reflected from a barrier.

This is an excellent example of where a function would have worked much better. Let’s write our
own function to accomplish this process. We’ll name our new function “getReflectedLight”. That
pretty well describes what the function will be doing. We don’t need to pass any values into the
function to make it work, but we do need the function to return a value back to our main program.

Consider how we can improve Lesson 10 Example 5 by turning the process of reading the
reflected light into its own function, then calling the function each time we want to read the
reflected light, rather than repeating our seven lines of code each time.

This is a good challenge to try on your own. I've posted my example of the improved code on the
next page.

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

Cleaned up barrier detect example. Now using a function to read reflected light.

#include “WinkHardware.h” E-a

int reflectedLight; } Declare global variables
int baseline,threshold;

void setup(){

hardwareBegin(); } Normal setup functions
playStartChirp();

delay(2000); //wait 2 seconds

baseline = getReflectedLight(); } Call getReflectedLight function (below)
threshold = baseline + 10;

void loop(){
reflectedLight = getReflectedLight(); } Call getReflectedLight function (below)

if (reflectedLight < threshold) //threshold from above

{
motors(100,100); //drive forward
3
else //otherwise...
{
motors(0,0); //be still
3

} //end of loop()

int getReflectedLight(void){ \

int lightOff, lightOn, diff; //declare as local variables This is our new getReflectedLight function. It
digitalWrite(Headlight, HIGH); //turn on IR Headlight doesn’t require any input arguments, so we
delay(1); //delay 1 millisecond have “void” in the parenthesis. It does return
lightOn = analogRead(AmbientSenseCenter); //read sensor an int type value, so we specify “int” as the
digitalWrite(Headlight, LOW); //turn off IR Headlight } return type in the opening line.

delay(); //delay 1 millisecond This function will measure, calculate, and
lightOff = analogRead(AmbientSenseCenter); //read sensor return the amount of light reflected from a
diff = lightOn - lightOff; barrier. It can now be called with a single line
return diff; J of code from anywhere in our program.
} //end of getReflectedLight function

Wink_Chl3Functions_Ex03

This new and improved example does the same thing as Lesson 10 Example 5, except it is
now much easier to read and understand.

SKILL
LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

We've done a few things in the above example to improve Lesson 10 Example 5.

We have added the code required to read and calculate the reflected light into a separate E-Q
function. Because most of the variables we were using before are now local variables inside
the function, I’'ve removed some of the global variables that were in the original example.

I’ve also changed the order the sensor is now read. This time I’'m reading it “on” first, then “off”,
which makes more sense to me. I've also changed the name of the original centerLightOnly
variable to “reflectedLight” because | think that better represents the value we’re using it for.

Returning more than one value...

Sooner or later, you are going to want a function to return more than one value. Our new function
getReflectedLight measures the light reflected back to only the center ambient sensor. But Wink
has three ambient sensors - one in the center facing forward, and one facing to either side.
Wouldn't it be nice if we could measure all three sensors at the same time and return all three
values?

That would be nice. However, unfortunately, the people who wrote the C language either hadn’t
thought of this, or they thought they had a good reason to prevent this. The short answer is that
you cannot return more than one value from a function. (And for those of you that are more
advanced, be it known that you can’t return an array either, so that idea is out).

But there is a work around.

The easiest way to return multiple values is to create global variables for each of the values. Then
you can assign new values to these global variables inside your function, and after the function
completes, the variables will still hold their new values. Let’s modify our getReflectedLight function
to do this. (Note, the example in the companion code is much easier to read, please check it).

int getReflectedLight(void){
int leftOff, rightOff, centerOff; //declare as local variables
int leftOn, rightOn, centerOn;
digitalWrite(Headlight, HIGH); //turn on IR Headlight

J Local variables

delay(1); //delay 1 millisecond

leftOn = analogRead(AmbientSenseleft); //read left sensor

centerOn = analogRead(AmbientSenseCenter); //read center sensor

rightOn = analogRead(AmbientSenseRight); //read right sensor Read all sensors with headlight on
digitalWrite(Headlight, LOW); //turn off IR Headlight

delay(1); //delay 1 millisecond

leftOff = analogRead(AmbientSenselLeft); //read left sensor

centerOff = analogRead(AmbientSenseCenter); //read center sensor . .
.))) Read all sensors with headlight off
rightOff = analogRead(AmbientSenseRight); //read right sensor

leftReflected = leftOn - leftOff; //calculate result

rightReflected = rightOn - rightOff; //calculate result Do calculations, store results in global
centerReflected = centerOn - centerOff; //calculate result variables

return centerReflected; //return center value

Return centerReflected value
} //end of getReflectedlLight function }

Wink_Ch13Functions_Ex04

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

Have a look at Wink_Ch13Functions_Ex04 in the companion code archive for an easier
time reading the code. =/

. . . w

In this new example, the only change necessary to the rest of our code is the global variable E 5
declarations at the very top. Because leftReflected, rightReflected, and centerReflected

are all global variables now, they need to be declared outside of any functions.

int reflectedLight;
int leftReflected,rightReflected,centerReflected; New global variables declared at top of
int baseline,threshold; program.

You will also notice that even though centerReflected is now a global variable, and we could
reference that value from within the rest of our code, we are still going to return centerReflected
anyway. Why would we do this?

The main reason is for “backward compatibility”. Because our existing program is already
expecting a result from the getReflectedLight function, and we are still calculating this same value,
we may as well return it as we have been in the past. This way, any code that already works

with the old function will still work with the new function. Any time you modify a function that is
already being used somewhere else in your code, it is worth considering how you can keep the
new function backward compatible so you don’t accidentally break the rest of your code that was
working okay up to that point.

We can call the function and directly assign the return value to a variable like this...

reflectedLight = getReflectedLight(); } Automatically assign centerReflected value to
the reflectedLight variable

We can also call the function by itself. If you call the function by itself, after the function
completes running, our global variables for left, right, and center reflected will all be updated to
the new values. Like this...

getReflectedLight();

This code would do the same thing as the
reflectedLight = centerReflected; }

above example

So now that we have the left, right, and center reflected values being easily calculated for us by
our new getReflectedLight function, can we think of a way to improve Wink’s behavior? Right now
he just drives straight until he’s close to a barrier. When he gets close to the barrier, he stops.
Instead of stopping, could we make him turn to one side or the other to try and drive around it?

Try that on your own then check out the example on the next page.

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

void loop(){ V
reflectedLight = getReflectedLight(); E-a
if (reflectedLight < threshold) //threshold from above

{
motors(100,100); //drive forward
¥
else //otherwise...
{
if (leftReflected > rightReflected){)
motors(80,-80); //rotate right Instead of just running motors(0,0); to stop
} Wink, we have added this new section that
else{ P rotates Wink based on which side measured
motors(-80,80); //rotate left more reflection. This should steer him away
b from barriers.
delay(100); //give robot a chance to rotate a while y

3
} //end of loop()

Wink_Chl3Functions_Ex05

When you run this example, you may notice Wink always wants to steer a certain direction, even
if this is turning toward the barrier. This can be caused if one of the ambient sensors tends to
generally read a bit higher than the other. There are slight variences in manufacturing, and the
IR headlight may be very slightly angled to one side or the other. If you open this example from
the companion code archive, you will see a Serial.print line that is commented out. You can un-
comment this line to see the sensor values in your serial monitor window.

Test the readings by placing Wink squarely facing directly into a sheet of white paper or other flat
white object in front of his nose. Observe the values in your serial monitor. If you notice one side
is generally higher than the other by a certain amount, you can add this amount to the calculation.
I noticed on my Wink that the right side always measured about 7 counts higher than the left.

So | edited the getReflectedLight function and just subtracted 7 from the line that calculates
rightReflected. This resulted in Wink’s turning movements being more balanced.

So what else can you do with functions? It’s time to fly on your own for a while. Go back over
some of the other lessons, or write your own behavior starting with just the BaseSketch. See if
you can do something fun using functions. Now that you see how they work you’ll find it's much
easier to write code that does more interesting things.

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

A few more notes about Functions...

You could learn more about how functions work for days, but we've covered the basics =
here in this lesson. There are a few more things I'll point out before we finish up here. E'a

Nesting Functions...

One function can call another function, and that function can call yet another function, and so on.
This is sometimes called “nesting functions”. For example, you may call a function that measures
reflected light, and if the reflected light is above a certain limit, you may stop the motors by calling
beStill(), which then calls motors(0,0). So your main program has paused and gone off to run
your new reflected light function, which then pauses to go off and run beStill(), which then pauses
to go off and run the motors() function.

Once motors() completes, it will go back to where it left off in beStill(). Once beStill() is
complete, it will go back to where it left off in your reflected light function. Once that reflected
light function is complete, it will finally go back to where it left off in your main program.

There is however a limit to how many layers deep your program can go. Each time a function is
paused to go off and start another function, the processor needs to remember where it left off in
the previous function before starting the next one. Almost like leaving a bookmark of where it left
off.

This stack of bookmarks is often called “the stack” by advanced programmers. If you put too
many of these bookmarks in the stack, then the stack will overflow. (Called, as you would guess,
a “stack overflow”) which is where that term comes from.

The limits of this stack can change depending on some other background tasks being run by
Arduino. Generally, if you keep the number of nested functions to six or less, you should never
have to worry about a stack overflow.

The stack limits of the processor used in Wink are a bit over my own head, so if you do
understand this process better than | do, please contact me through the plumgeek.com website.
I’d like to update this section if someone can help me better understand the exact limits involved.

Functions with lots of arguments...

In our examples we’ve only passed two arguments to our functions. But you can pass as many
arguments as necessary. It is good practice to not pass more arguments than necessary to
accomplish the task so the function is easier to use. Sometimes you may have a valid reason to
need to pass six or even ten arguments. Keep in mind the arguments are passed in using the
same order that you included them in your parenthesis.

When you write your function, if the first argument is “int brightness”, then the local variable
“pbrightness” will be populated by the first value you include in the parenthesis when calling the
function. Same with the second, third, and tenth argument.

To understand what arguments a function needs, have a look at the function itself and study the
order and types of values the function is expecting. If it was written well, the names given to the
local variables in the function definition will help you figure out what the values do.

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

Really Simple Functions...

Functions don’t have to be complicated. Sometimes they can be used as simple
shortcuts to shorten up longer lines of code. For example, when | am using my serial E'a
monitor to debug code, | often use the line “Serial.print(“\t”);” to create tabs between

lines of output data. | always have the hardest time doing the quote-backslash-t-quote

combination. It would be much eaiser for me to just type “tab();” Why not make a function

for that?

void tab(void){

Serial.print(“\t”); } Simple shortcut function to make a tab

) appear in your serial monitor window.

You could do a similar thing to read a light sensor, because the analogRead along with the sensor
name is rather long, you can make it super short and simple like this...

int slft(void){

return analogRead(AmbientSenseLeft); } Simple shortcut to use instead of typing out

) the longer analogRead statement every time.

int srght(void){
return analogRead(AmbientSenseRight);

}
int sctr(void){
return analogRead(AmbientSenseCenter);

void loop(){
leftSensor = s1lft();

}

} Just use slft(); in place of the longer
statement above.

One caution about using these super simplified functions, is that if you get them too short, they
can start to make your code less readable. If | was reading your code and found a call to “sctr()”,
it probably wouldn’t be obviuos to me what that did. And when you re-read it yourself eight
months from now, it won’t be obvious to you either.

SKILL
LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

Functions Lesson 13

“Wrapper” functions...

A “wrapper” is a function that basically just “wraps around” another function. It’s E.a
an easy way to call a function by a different name. Maybe you created a function

called “remoteControlBasicHandler” and it is now used all over your code within lots of

other functions. What if you realize you should re-name it to something more simple like

“irHandler”? If you don’t want to go re-name everything, you could write a wrapper. Like

this...

void irHandler(int carrierFrequency, int dataRate){
remoteControlBasicHandler(carrierFrequency,dataRate); } Wrapper function example
3

Using the Arduino tabs to store functions...

Notice there are tabs across the top of the Arduino window such as FunStuff and WinkHardware.
There is also a copy of each tab with a “.h” behind it. Ignore that .h tab for now, but do have

a look at the tab that does not have the .h in the name. These tabs are separate files that are
stored in the same folder as your Arduino sketch. The code in these tabs is automatically included
when your sketch is compiled.

We suggest using the FunStuff tab to write your own functions, especially functions that may be
of general use for your programming with Wink. This would be a good place to put your shortcut
functions like tab() or slIft() from the example above. If you create a function you use often to
read Wink’s sensors, you can put that here also. Then when you write other examples, you can
just copy and paste the function into your new project as needed.

You should also note that when Arduino compiles your code into machine language for Wink’s
brain, it will only compile code inside functions you have actually called in your program. For
example, if you have a long function that measures all the sensors, creates averages, and solves
some complicated movement problem, that code will only be loaded onto Wink if you actually call
that function somewhere in your program.

For this reason, you don’t waste any memory or code space inside the robot by leaving behind
many different functions that aren’t actually being called. Sometimes it is useful to have all these
functions sitting in one of your tabs just in case they are needed, but know you won’t waste space
if a function isn’t needed. This way you can have tab() sitting there all the time if you ever want to
use it, but you won’t waste space inside the robot if you happen to not use it in a given program.

As long as you’re looking at the tabs... spend some time looking over WinkHardware. This is
where we’ve stored all of Wink’s background functions. Have a look at how they are written. The
code does look a bit complicated but that’s because it's more advanced. It'll be more readable
once you learn some more. This is a good example of how we can hide away some of the more
complicated looking code and make it all run by simply calling the function and letting the function
perform its task.

SKILL

LEVEL Learn to Code - Chi13 RevO1.1 ~ Plum Geek

